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Chapter 1

Introduction

Logical calculi can serve for many purposes, such as reconstructing and analyzing
mathematical proofs in a formal manner or automatizing the finding of mathemat-
ical proofs. As the paradoxes of set theory struck the mathematical community
around 1900, the formal and consistent representation of theories became a central
issue in foundational research. In the theory of proofs breath-taking results have
been obtained in the thirties of this century. They culminated in the completeness
and incompleteness (or better ”incompletability”) results of Godel [G6d30],[God31].
Somewhat later Gentzen defined a natural notion of formal proofs [Gen34], which
is closer to actual mathematical deduction than the so called Hilbert-type systems.
Like Herbrand [Her30] Gentzen investigated the form and structure of mathematical
proofs, while Godel’s work was more directed to provability.

In general it was not the purpose of proof theory to develop inference systems
for actual deduction or proof-finding: taking into account the complexity of relevant
mathematical proofs this is hardly surprising.

As computers and programming languages developed, the problem of mathemat-
ical proof finding was one of the first attacked in the field called Artificial Intelli-
gence today. A direct application of Herbrand’s proof theoretical result was tried by
Gilmore [Gil60] for performing automated deduction in first order predicate logic.

The idea behind was the following: Herbrand’s theorem gave a method to re-
duce a predicate logic proof to a propositional one by constructing a propositional
formula F” (out of a closed predicate logic formula F') which is derivable iff F' is.
Thus the following method is suggested: Try to find F’; for each “candidate” F”
decide the validity of F’. Because inference in propositional logic is simpler than
in predicate logic this method seems to be quite natural from the point of view of
logical complexity. But from the computational point of view this method shows
two serious defects: 1) The finding of F’, 2) The costs of inference on F”.

Point 2) above was successfully attacked by Davis and Putnam in the same year
[DP60], while the search for F” and also the (possibly enormous) size of £’ remained
serious obstacles. The method to apply proof theory (which was developed for other
purposes) to automated deduction directly has clearly failed. Obviously there was a
need to model some natural techniques of proof finding employed by humans within a
logical calculus. The invention of such a technique is the characteristic of Robinson’s
famous paper [Rob65], which was a real landmark in automated deduction (and in
some sense its very beginning). Particularly the consequent use of the unification
principle created a substantially new type of logical calculus. The resolution principle
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(a combination of a propositional cut rule and the substitutional unification prin-
ciple) vielded a spectacular improvement in performance versus Gilmore’s method.
While the propositional part of the resolution rule (the atomic cut) was changed in
various ways and even abandoned (in Bibel’s connection method [Bib82]), the unifi-
cation principle is part of every relevant computational proof calculus. Though (as
indicated above) resolution is no longer the only method in automated deduction
today, it is still playing a central role and some features (such as the unification
principle) are common to all computational calculi.

The purpose of this course is to present the resolution calculus, some of its
newest forms and variants and its applications. We will try to show that resolution
is not only a powerful technique in automated deduction, but also a tool to address
problems in mathematical logic (such as the decision problem of classes in first
order logic). Although not sufficiently honoured by the community of logicians, the
resolution calculus can give interesting insights and contributions to proof theory
and to the theory of proof complexity. It is a firm belief of the author that (in the
long run) methods of automated deduction will not only play a role in computer
science (logic programming, program verification, expert systems etc.) but also
in logical proof theory. Because of its importance to computer science, resolution
theory branched into many different topics and applications. For this reason we had
to make a selection and to omit important applications such as logic programming
(which deserves treatment in an own special course). Special emphasis is laid to
foundational issues such as decision theory and proof complexity. We will illustrate
how the development of more powerful deduction techniques can be influenced by
problems in mathematical logic and complexity theory.

In chapter 3 we present the basics of resolution theory by following the usual
path of presentation. Chapter 4 is devoted to resolution refinements; here we try to
explain refinements from a more abstract point of view and we develop a formalism
for the decision theory in chapter 6. Instead of giving an exhaustive survey of
the numerous refinements we concentrate on a few typical ones, illustrate the key
ideas and classify them structurally. In chapter 5 we discuss deletion methods,
where (not completely standard) techniques as condensing and clause implication
are discussed. Chapter 6 shows how resolution methods can be adapted to decide
first order classes. Starting from Joyner’s results [Joy76] we present some recent
results and techniques ( such as decision generators and model building methods).
In chapter 7 we present a logical complexity theory of resolution. It is shown that
resolution proofs, compared to other logical calculi, can be very long (the relation
may be nonelementary). The method of function introduction is presented, which
is based on resolution but has a strong power of lemmatization. We discuss some
variants and applications of this method and present some recent speed—up results,
such as the nonelementary reduction of proof length by function introduction (based
on Statman’s famous example from combinatory logic).

Chapter 2

Terminology

2.1 Terms, Literals and Clauses

Concerning the language of clause logic we assume that there is an infinite supply of
variable symbols V, constant symbols CS, function symbols F'S, and predicate sym-
bols PS. As usual we assume each function and predicate symbol to be associated
with some fixed arity which we denote by arity(F) for F € PS or F'S. We call a

predicate or function symbol unary iff it is of arity 1, binary iff the arity is 2, and

in general n-place for arity n. The set of n-place function and constant symbols is
denoted by F'S,, and PS,, respectively.

If S is some set of expressions, clauses or clause sets then C'S(S), F'S(S), and
PS(S), refers to the set of constant, function and predicate symbols, respectively,
that occur in S. (For a formal definition of occurrence see definition 2.12 below).

We define the notions term, atom, literal, ezpression and clause formally:

Definition 2.1 A term is defined inductively as follows:
(i) Each variable and each constant is a term.

(ii) If t1,...,t, are terms and f is an n-place function symbol, then f(t1,...,tn)
is also a term.

(iii) Nothing else is a term.

If a term t is of form f(t1,...,t,) we call it functional; the set of arguments of ¢ —
args(t) — is {t1,...,tn}; f is called the leading (function) symbol of ¢.
The set of all terms is called T

Definition 2.2 If ¢4,...,t, are terms and P denotes an n—place predicate symbol
then A = P(ti,...,t,) isan atom; P is called the leading (predicate) symbol of A;
args(A) is the set {t1,...,tn}.

Definition 2.3 A literal is either an atom or an atom preceded by a negation sign.
Definition 2.4 An ezpression is either a term or a literal.

Definition 2.5 A clause is a finite set of literals. The empty clause is denoted by
0.
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Definition 2.6 If a literal L is unsigned, i.e. if it is identical with an atom A, then
the dual of L — L% — equals —A. Otherwise, if L is of the form —A then L¢ = A.
For a set of literals C' = {Ly,..., L, } we define C% = {L¢,..., L¢}.

Additionally we introduce the following notation:

Definition 2.7 C, is the set of positive (unsigned) literals of a clause C, analo-
gously C_ denotes the set of negative literals (negated atoms) in C.

Definition 2.8 C is a Horn clause iff it contains at most one positive literal, i.e.
ICy <1

2.2 Term Structure
The term depth of an expression or of a clause is defined as follows:

Definition 2.9 The term depth of a term ¢ — 7(t) — is defined by:
(i) If ¢ is a variable or a constant, then 7(¢) = 0.

(i) If t = f(t1,...,tn), where F is an n—place function symbol, then 7(¢) = 1 +
max{7(t;)|]1 <7< n}.

The term depth of a literal L is defined as 7(L) = max{7(¢)|t € args(L)}. The
term depth of a clause C is defined as 7(C) = max{r(L)|L € C}. For a set S of
clauses we define 7(5) = max{r(C)|C € S}.

Definition 2.10 Iftis a term then s(¢) — the number of subterms of ¢t — is defined
inductively as follows:

(i) If ¢ is variable or a constant, then s(t) = 1.
(ii) If ¢t = f(t1,...,tn), then s(t) = 14+ 31 s(t;).

We define simultaneously the notions of a subexpression and the corresponding
depth of occurrence of a subexpression:

Definition 2.11 The i*" subexpression — SUB(i, E) — of an expression E and its
respective depth of occurrence are defined inductively as follows:

(1) SUB(O,E) - E, TSUB(O,E) =0

(ii) if SUB(k,E) = f(t1,...,tn), where f is an n-place function symbol, then
SUB(l-HC-{—Z;;ll s(tj), E) = t; and TSUB(l-i-k-{-Z;;ll s(tj), E) = tsup(k, E)+
1.
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(iii) if SUB(k,E) = P(t1,...,tn), where P is an or an n-place predicate symbol,
possibly preceded by a negation sign, then SUB(1 + k + Z;;i s(t;), E) = t;.
and TSUB(l +k + Z;;ll S(tj), E) = TSUB(IC, E)
It can be verified easily that SUB(i, F) and 7syp(i, E) are defined uniquely for
all 0 <@ < s(E).
Definition 2.12 We say that an expression t occurs in an expression F, iff there
is an 4, s.t. t = SUB(i, F'). Occasionally, we shall write E[t] to indicate that ¢ is a
proper subterm of E, i.e. that ¢ occurs in E but ¢t # E. We also say that a function
or predicate symbol F occurs in E iff F' is the leading symbol of some expression ¢
that occurs in E.
The set of all variables occurring in F is called V(E); if C is a clause, then V(C)
is the union over all V/(F;) for all atoms P; in C.
We define E; and Es to be variable disjoint iff V(E1) NV (E2) = 0.
By OCC(z, E) we denote the number of occurrences of a variable z in F, i.e.

0CC(z, E) = |{i| SUB(:, E) = z}|.
OCC(z,C) is defined analogously for clauses C'.

Definition 2.13 An expression or a clause is called ground if no variables occur in
it. We call it constant free if no constants occur in it, and function free if it does not
contain function symbols.

Example 2.1 Let £ = P(z, f(f(y))). Then we have

SUB(0,E) = Pz f(f(v)), SUB(L,E) = =,
SUB(2,E) = [f(f(y)), SUB(3,E) = [fly),
SUB(4,E) = 1y, V(E) = {z,y},
0CC(x,E) = 1, 0CC(y,E) = 1.

E is not ground, but constant free.

Definition 2.14 7y (t, E) is defined as the minimal depth of occurrence of a term
t within an expression F, i.e.

Tvin (6, E) = mill{TSUB (’i, E)|vi s.t. SUB(3, E)=1).
If C is a clause, then 7py (¢, C) denotes the minimum of Ty (¢, P;) for all atoms

P; of C. Tyax(t, E) respectively Tprax (¢, C) are defined in the same way.

Example 2.2 Let P, = P(z, f(f(v))), P> = Q(f(z)) and C = {Py,~P}. Then we
have

(P) = 2, T(Py) = 1,
T(C) = 2,
su(0,P1) = 0, sup(0, ) = O,
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Definition 2.15 The mazimal variable depth of an expression F is defined as 7,(E)
= max{Tyax(z, E)|z € V(E)}. For clauses C' we define 7,(C) = max{7,(L)|L €
C}; analogously for clause sets S 7,(S) = max{7,(C)|C € S}.

2.3 Substitutions

Another basic notion is the concept of substitution.

Definition 2.16 Let V be the set of variables and T' be the set of terms. A sub-
stitution is a mapping o : V — T s.t. o(z) = z almost everywhere. We call the set
{z|o(z) # z} domain of o and denote it by dom(c), {o(z)lz € dom(o)} is called
range of o (rg(c)). By € we denote the empty substitution, i.e. g(z) = « for all
variables z.

We shall occasionally specify a substitution as a (finite) set of expressioné of the
form z; « t; with the intended meaning o{(z;) = ;.

Definition 2.17 We say that a substitution o is based on a clause set S iff no other
constant and functions symbols besides that in C'S(S) and FS(S), respectively,
occur in the terms of rg(o).

A ground substitution is a substitution o s.t. there are only ground terms in rg(o).

The application of substitutions to expressions is defined as follows:
Definition 2.18 Let E be an expression and ¢ a substitution.
(i) If E is a variable, then Eo is o(F) (cf. definition 2.16).
(ii) If F is a constant, then Eo = E.

(iii) Otherwise E is of the form F(t1,...,t,), where F' is either an n-place function
or predicate symbol (possibly negated). In this case Eo = F(ti0,..., Lno).

Tf L is a literal, then Lo is defined to be the application of o to the atom of L. IfC
is a set of expressions or a clause, then Co = {Ec|E € C}.

Definition 2.19 An expression E; is an instance of another expression £z iff there
exists a substitution o s.t. Eq = Eqo. Likewise a clause C; is an instance of clause
Cq iff C7 = Cqo for some substitution o.

We may compare expressions, substitutions and clauses using the following or-
dering relation.

Definition 2.20 Let E; and E, be expressions, then By <, Ey — read: Ey is more
general than E; — iff there exists a substitution o s.t. Byo = E,. For substitutions
p and 0 we define analogously: p <, 0 iff there exists a substitution o s.t. po = 0.
Similarly, if C and D are clauses, C' <; D iff there exists a substitution o s.t. Co CD.
In this case we also say, in accordance with the usual resolution terminology, that
C subsumes D.

Chapter 3

The logical basis of resolution

3.1 The transformation to clause form

An essential feature of the resolution principle, such as of most other methods in
automated deduction, is the inference on structurally very simple formulas called
clauses. Clauses are quantifier-free constituents of conjunctive normal forms. While
conjunctive normal forms are not required in all computational calculi, the elimi-
nation of quantifiers plays an essential role in all inference systems for automated
deduction. Resolution is a refutational method and thus is based on the idea of
indirect proof (reductio ad absurdum). Instead of proving A directly, we take —A,
transform it to a clausal normal form C and refute C.

Consider for example a mathematical theorem of the form G: (A1A...AA,) — C,
where the A;’s are some axioms and C' is the conclusion (we assume that the A; and
C are all closed first order formulas). The first step is to consider F: 43 A ... A
A, A—C' (which is equivalent to =G), the second to transform F' to a quantifier-free
conjunctive normal form F’. In many practical cases the reduction to conjunctive
normal form is relatively easy, as the form of F is already “conjunctive”.

The crucial step in transforming F' consists in the elimination of existential quan-
tifiers. After removal of the existential quantifiers also the V-quantifiers can be
omitted, because (by the specific structure of the formula) their position is of no
significance anymore.

We now describe the main transformation steps in detail, where the underlying
object is a formula F' to be refuted).

Step 1: Eliminate —, push all ='s in front of atomic formulas and remove multiple —'s.
More formally:

1a) Replace (A — B) by (mAV B) everywhere in F'.

1b) Replace =(A A B) by (mAV —B)
-(AV B) by (AA-B)
—-=A by A
-(Vz)A by (3z)-A
=(3z)A by (Va)-A

Step 2: Elimination of 3-quantifiers.
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After step-1 we have a formula Fy, containing only the logical symbols V, 3,
A, V, -, where ‘= only occurs in front of atomic formulas. Henceforth we call for-
mulas of the form F} “normalized under step-17.

Let F' be normalized under step 1 and (3z) be an existential quantifier in F, which
is in the scope of the universal quantifiers (Vy1), ..., (Vyn). By adequate renaming
of the quantifiers and by application of simple quantifier-shifting rules we get [’ ~
(Va1) ... (Vyn)(3z)F" (where F” is F without the quantifiers (Yy1), .- -, (Vun), (32))-

Definition 3.1 Let (in some tree ordering) (3z) be the first J-quantifier in F' s.t.
F o~ (Y1) ... (Vyn) (32) F'.

We define
6(F) = (Pl ;"]

T

where (F_(3)) is the formula F after omission of the quantifier (3z) and f is a
function symbol not occurring in F. If (3z) is not in the scope of any V-quantifier, a
new constant symbol is substituted for z. Note that 6(F) is logically equivalent to

(Vy1) - (Vyn) F’ {f(yx ,;‘,yn)}

(but not syntactically identical).

The elimination of I-quantifiers effected by ¢ is frequently called skolemization (after
the Norse logician Thoralf Skolem). The replacement of F' by 8(F') is not without
problems from a semantical point of view:

Example 3.1
F = (v2)(3y) P(z,y), 6(F) = (Vz) P, f(2))-

Obviously F' is not logically equivalent to 6(F) (only 6(F) — F holds) and thus the
models of F' and §(F') are not the same.

But recall that our goal is to refute F’; if instead of F' we may refute 6(F) then
no problems arise. In fact, ' and 6(F) are sat(isfiability)-equivalent.

Definition 3.2 Two formulas F and G are sat-equivalent (F ~sq G) if it holds: F
is satisfiable iff G is satisfiable.

The following theorem states the soundness of transformation § under sat-equiv-
alence.

Theorem 3.1 Let F' be a formula which is normalized under step—1 then F ~gq;
5(F).

Remark: A detailed proof can be found in the books [CL73], [Lov78].
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Proof: (sketch)
(1) 6(F) satisfiable = F' satisfiable: This is trivial, as 6(F) — F is valid.

(2) F satisfiable = 6(F) satisfiable: Let F' ~ (Vy1)...(Vy,)(3z)EF’. If M is a
model of F then (intuitively) for all 41, ..., ¥y, there must be an z s.t. F’ holds
in M. Thus (by the axiom of choice) we may select exactly one element z for
every tuple (y1,...,%,) and get a n-ary function ¢ over the domain of M.
Let M’ be an interpretation obtained from M by interpreting a new n-ary
function symbol f by ¢. Then M’ is a model of

G = (V1) ... (Vyn) F'[ @),

T

But G ~ §(F).

Note that the argumentation above does not make use of the mathematical concept

of a model-the term "for all y1,...,y,” does not separate syntax and semantics
cleanly-and only traces the intuitive lines of the proof.

In order to skolemize F' it is not necessary to transform F into prenex form; such
a transformation is even of negative influence as the following example shows.

Example 3.2
A= (Vo) (Fy)Pz,y) A (Vu)(Fv)Q(u, v).

The quantifier prefix of a prenex form for A is either V3V3 or YW33. In both cases

there is a 3—quantifier which is in the scope of two V—quantifiers.
For

B = (Vz)(Jy)(Vu)(Fv)(P(z,y) A Q(u,v)) we get
5(B) = (Vz)(Vu)(Fv)(P(z, g(z)) A Q(u,v)) and
6(6(B)) = (vz)(Vu)(P(z,9(z)) A Q(u, f(z,u)))

On the other hand,

8(6(A)) = (Vo) P(z, 9(z)) A (Vu)Q(u, h(u)).

That means skolemizing A directly requires introduction of one-place function sym-

bols only, while two-place function symbols are required for the form B. Particularly
note that A ~ B does not imply §(A) ~ §(B).

If F contains n existential quantifiers we can apply 6 n—times and (as ~gq; is an
eqt‘uvalence relation) F ~gq 60 (F) and 6™ (F) is 3—free. Instead of 6™ (F) we
write SK(F') and call SK(F') the skolemized form of F.

' With the computation of SK(F) for a F normalized under step-1, step-2 (the
elimination of 3-quantifiers) is completed.
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Example 3.3 We show all steps defined so far, starting from a theorem to be proved
and ending with the skolemized form of its negation.

Let G = [(V2)(3y) Pz, y) A (Bu) (Vo) (P(u,v) — Q(v))] — (32)Q(2)-

=G transforms under step-1 to:

F = (Va)(@y)P(z,y) A (Fu)(Y0) (=P (u, ) V Q(u)) A (V2)~Q(2).
5(F) = (¥2)(P(z, f(2)) A (@u)(Y0)(=P(u,v) V Q) A (V2)Q(2).
SK(F) = §(F) = (Va)P(z, f(2)) A (V)(=P(a,v) V Q(v)) A (V2)~Q(2).

In SK(F) the V-quantifiers are clearly redundant, because they can be shifted in
front without changing the semantics.

SK(F) ~ (V) (¥0)(V2)(P(=, f(2)) A (~P(a,v) V Q(v)) A ~Q(2))-

The redundancy of quantifiers is not merely a feature of example 3.3, but holds for
all Skolemized forms. We thus get:

Step-3: Eliminate all V-quantifiers from SK(F). The form obtained after step-3 is
frequently called negation—normal form (NNF).

The NNF of F' in example 3.3 is:
P(z, f(z)) A (=P(a,v) V Q(v)) A —Q(z).

Tn this case the NNF is already identical to the conjunctive normal form (CNF) of
F. Generally one more step is required.

Step—4: Transform the NNF of F' to a CNF.

Besides the usual way to transform into a logical equivalent CNF there is the possibil-
ity to transform into a sat—equivalent CNF (by introducing new predicate symbols)
in polynomial time. But we don’t go into details here [Ede92].

Tt is obvious that in a CNF also the Connectives A, V are redundant as they
only hold specific fixed places. Moreover (as it is generally defined) a CNF has to
be considered as normalized under associativity, commutativity and idempotency of
A and V. So we get a natural representation of a CNF, as a set of clauses, a clause
being a set of literals (see definition 2.5). Thus this last transformation step gives
us the set of clauses

{P(z, f(2))}, {=P(a,),Q(v)}, {-Q(2)}}

for the formula F in example 3.3.

The clause form is quasi logic—free, as we need not to take into account properties
of quantifiers and connectives anymore. Instead the computational inference meth-
ods concentrate on the term structure (which can even become more complicated
by transformation to clause form).
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3.2 Herbrand’s Theorem for Clause Forms

In [Her30] Herbrand showed that the provability of a predicate logic formula F' is
equivalent to the provability of a purely existential form F’ (obtained from F by elim-
inating V-quantifiers and introducing function symbols like in chapter 3.1). Moreover
he proved that F’ is derivable iff there is a disjunctive quantifier- and variable-free
formula F” (defined by instances of the matrix of F’) which is derivable. Here
we have the concept of provability—equivalence (as opposed to logical equivalence)
analogous to the concept of sat—equivalence defined before. It is easy to dualize
Herbrand’s result: A universal prenex formula is unsatisfiable iff there is a conjunc-
tive quantifier- and variable-free ground formula (defined by ground instances of the
matrix of F)) F’ which is unsatisfiable. Note that the second formulation is model
theoretic, while the first is proof-theoretic; but by the completeness of (all standard)
first order inference systems there is no actual difference. By adapting Herbrand’s
theorem to clause logic we get

Theorem 3.2 Let C be a set of clauses. Then C is unsatisfiable iff there is a finite
set of ground instances C’ of clauses in C which is unsatisfiable.

The proof of theorem 3.2 is too complex to be presented here; again we refer to
[CL73] and [Lov78]. But we will sketch the main ideas of the proof for Herbrand’s
theorem in its model theoretic version above. Note that a finite set of ground
instances can be interpreted as a conjunctive normal form containing no variables.

First of all, satisfiability can be characterized by satisfiability via a specific kind
of interpretation,the so called Herbrand interpretation. Before giving the formal
definitions we present a motivating example.

Example 3.4 Let

C={{P(z, f(2))}, {=P(a,v), Qv)}, {-Q(b)} }.

We define a domain for a model inductively:

HO = {a,b},
Hn+1 = HpU {f(t> l te Hn}a

H, is the set of all ground terms over {a,b, f} and is called the Herbrand universe
of C. Moreover we define an interpretation ¢ for the function symbol f as:

p={(t )|t eH]}.

a, b are interpreted by “themselves” (note that the symbols a, b belong to the domain
of interpretation). It remains to define truth values for P and @, or better predicates
7w and p (w for P, p for @):

.’O(t) = TRUE for t¢#b, p(b) = FALSE.
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7m(a,b) = FALSE, w(s,t) = TRUE for s # a or t # b. Because the
domain of interpretation consists of terms we may write P(a,b) = FALSE instead
of m(a,b) = FALSE. In fact the model can be described by assigning truth values
to the ground atoms P(s,t), Q(s) for s,t € H,.

In general, a Herbrand interpretation is characterized by fixed domains (Herbrand
universes) and fixed interpretations for constant — and function symbols.

Definition 3.3 Let C be a set of clauses. Then the Herbrand universe H(C) is
defined as:
H(C) = U Hi(0),
where the H; are defined as:
Ho(C) _ CS(C) i CS(C)#0
0 {a} if CS(C) =0, a € CS arbitrarily chosen,
H,+1(C) {f(te, - stap) | f € FS(C),t € Hy(C) U HL(C)

Definition 3.4 Let C be a set of clauses. A Herbrand interpretation of C is an
interpretation (H(C),®,I) where for every a € CS(C) ¢(a) = a and for every f €

FS,(C),n e N:
o(f) = {1, otn, f(t1, .. ta)) |t € H(C)}.

As (semantically) a clause is the generalization of a disjunctive formula {L1, ..., Ly}
corresponds to (Vzi)...(Vz,)(L1 V...V Lg). {L1,...,Lg} is true in a Herbrand
interpretation A = (H,®,I) iff va,(L; V-V Lg) = TRUE for all interpretations

J~Imodzy,...,x,. But by the definition of a Herbrand interpretation
va, (L1 V-V Lg) =TRUE for all J ~ I mod zy,...,z,
iff

va(o(Ly V-V Lg)) = TRUE for all ground substitutions o over H.

Thus C is true in A if for every o € GS(C) there is a literal L; s.t. va(o(L;)) =
TRUE. On the other hand C is false in A if there is a ground instance o over C s.t.

va(o(L1 V...V L)) = FALSE.

Herbrand interpretations are characterized by the truth values of the ground
atoms and thus can be represented as:

{P(s1,..-,8n) | (51,...,8,) € A(P),P € PS,(C),n e N}U
{=P(s1,...,8n) | ($1,...,8n) € H. — A(P), P € PS,,(C), n€ N}

for A(P) = {(s1,...,8n) | (51,--.,8) € Hy, ®(P)(s1,...,8,) = TRUE} (P €
PS,(C)). For C = { {P(z, f(z)}, {~P(a,v),Q(v)}, {-Q(b)}} the model defined

before can thus be written as:

{=Q(6), ~P(a,0)} UlUsen. - 1 {Q()} U U s iy mrz— (apyy (P (5, 1) -

The importance of Herbrand interpretations is grounded on the following result:
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Theorem 3.3 C is satisfiable iff there is a Herbrand model of C.
Proof: [CL73], [Lov78].

By theorem 3.3 we may reduce the question of unsatisfiability to that of unsatisfiabil-
ity via Herbrand interpretations. Coming back to the proof of Herbrand’s theorem,
the last step is to show that, in case no Herbrand interpretation satisfies C, this fact
must be definable in finite terms. By systematically excluding H-interpretations
from being models we end with finitely many alternatives which yield the set of
ground instances C’ for C (the key concept is that of a semantic tree). Again let

¢ ={{P(z,f(x))}, {~P(a,v),Q(v}, {~Q(2)}}

like in example 3.3. For the finite unsatisfiable set of ground clauses we may talke

{{P(a, f(a))}, {=P(a, f(a)),Q(0)}, {~Q(D)}}.

While Gilmore [Gil60] used Herbrand’s theorem directly (by successively generat-
ing sets of ground instances and testing them for unsatisfiability) modern inference
methods use Herbrand’s theorem for theoretical analysis only (not for algorithms).

3.3 The Unification Principle

Unification is essential to deductions in every logical calculus containing a substitu-
tion rule (or substitution axioms). Suppose for example that we have derived the
formulas A(a) and (Vz)(A(z) — B(z)) in PL. To infer B(a) we apply the substitu-
tion rule to the second formula and get A(a) — B(a); afterwards we apply modus
ponens and derive B(a). Thus we have “unified” A(a) and A(z) to A(a) in order to
apply modus ponens. In the resolution calculus for clause logic unification of literals
plays a central role.
Again, consider the example

C={{P(z, f(2))}, {~P(a,v),Q(v)}, {-Q(2)}}.

C corresponds to the PL—formula
(Yz)P(z, f(2)) A (Vo) (=P (a,v) V Q) A (V2)=Q(2).

We derive a contradiction by using the substitution rule and the propositional cut

rule
AVLVB CVI¢VD

AvBvVCVD
We start with substitutions first:

(Vz)P(z, f(z))

S TP fla)
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(Vo) (=P(a,v) V Q(v))
~P(a, f(a)) v Q(f(a))

The substitution used in Sy is 01 = {z < a}, the one used in Sy is o9 = {v « f(a)}.
Defining

Sg:

c=01Uoy={z —a, v fla)}
we get
o(P(z, f(z))) = o(P(a,v)) = P(a, f(a)).
o is called a unifier of P(z, f(z)), P(a,v). After application of 51, Sz we derive:

Pla, f(a)) —P(a, f(a) vV Q(f(a))
Q(f(a))

By Sg:
(V2)-Q(2)

—Q(f(a))
we get the unifier n = {z « f(a)} of Q(f(a)) and Q(z). From Q(f(a)) and -Q(f(a))

we derive a contradiction. This example shows the basic idea of resolution, where
unification is performed to make a propositional cut rule applicable.
The general problem is to find a substitution ¢ for a set of expressions

{E1,...,En}
st.o(Ey) = - =0(Ey,),or | {Ey,...,E,}o |= 1

Definition 3.5 Let W be a nonempty set of expressions. A substitution o is called
unifier of W if | Wo |= 1.

In general there are infinitely many unifiers even if the domain of the substitution
is restricted to V(W). '

Example 3.5
W = {P(z, f(2)), P(f(y),2)}.
The following substitutions with domain C {z,y, 2z} are unifiers:

o={z—f(y),z < f(fW))}
and 'for every t € T — {y}:

0y = {.’13<— f(t)vz"" f(f(t))ayk"t}

We see that there is something superfluous in the definition of the unifiers o, and
that o is more “economical”. Indeed o is a so called most general unifier (m.g.u.)
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as every other unifier of W can be derived from o by an additional substitution. In
fact it holds:

op=ocf{y «—t} forallt € T — {y} and thus

o <, oy for all such t.

In computational logic only m.g.u.’s are computed (this really suffices). Note that
modulo variable permutations there is only one m.g.u. for a set of expressions W,
while the set of all unifiers can be infinite; thus the restriction to m.g.u.’s results in
an obvious gain in efficiency.

Definition 3.6 A unifier o of W is called most general unifier (m.g.u.) if for every
unifier n of W it holds o < 7.

In the sense of the subsumption ordering <,, m.g.u.’s are minimal elements in the
set of all unifiers.

The properties of substitutions and unifications are investigated exhaustively in
[Ede85]. One of the results is that the order of computing unifiers is irrelevant:

mgu(W1 U W3) = mgu(Wioy U Waos)

where
o; = mgu(W;).
Thus
mgu({E1, ..., En}) = mgu({Er, F})
where
F=Fyo= - =F,o
and

o =mgu({Fa,...,En}).

By the property above it clearly suffices to compute m.g.u.’s for two—element sets
W and to iterate the computation. As for two m.g.u.’s ¢,y we have o =4 v but not
(in general) o = v, mgu () is not a function in the strict sense. But we will never
get problems by speaking of “the” most general unifier.

To find m.g.u.’s does not require imagination or creativity, but can be achieved
by algorithms (so called unification algorithms). There are linear time algorithms
to decide unifiability and to represent the unifier in compositional form [MM82] (to
apply the unifier to the set of expressions may be exponential). As we do not focus
on complexity issues here, we present a simple (exponential worst-case) algorithm
which decides unifiability of two expressions and, in case of unifiability, computes a
m.g.u.

Let

EI{P(tl,...,tn), P(S]_,...,Sn)}.
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By elementary properties of substitutions we have

P(tl,‘..,tn)U = P(tld,...,tnU),
P(s1,...,80)0 = P(s10,...,8,0).

Thus E is unifiable iff there is a substitution o s.t.
510 = 10,820 = 120,...,8,0 = t,0.

We may also say that all pairs (s1,¢1),. .-, (Sn,t,) have to be unified simultane-
ously. The (s;,t;) may be again of the form (f(u1,...,un), f(v1,...,vm)) and so
the property holds recursively. This leads to the following definition:

Definition 3.7 Let Ey, F5 be two expressions. The set of corresponding pairs
CORR(Eq, E;) is defined as follows:

(1) (El,Eg) S OORR(El, EQ)

(2) If (Fl,FQ) S OORR(El,EQ) s.t. F1 = F(sl,...,sn) and F2 _- F(tl,...,tn),
where F' € FSUPS or F = -P for P € PS, then (s;,t;) € CORR(E, E3) for
1=1,...n.

(3) Nothing else is in CORR(F4, Es).

A pair (Fy, F3) is called irreducible if the leading symbols of Fy, Fy are different and
strongly irreducible if it is irreducible and both Fy, Fy are not variables.

Example 3.6

Ey

P(f(z,y), f(z,a)),
By = Pz f(z,b))

CORR(Elv EQ) = {(E19E2)> (f(m7 y)a Z), (f(:z:,a),f(a:, b))? (:E,x), (aa b)}
(f(z,y),z) is irreducible and (a, b) is strongly irreducible.

It is obvious that {E7, Fy} is not unifiable if CORR(E1, E2) contains a strongly
irreducible pair. (Note that strong irreducibility is stable under substitutions).

The key technique of the following unification algorithm is to eliminate pairs
which are irreducible, but not strongly irreducible.

Exarhple 3.7
Ey = P(a:,f(a:,y)),
Es = P(f(u:u)7v))

CORR(E;, Es)

{(Ela EQ): (:E7f(u7 u))> (f(mvy>av)}
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We eliminate the irreducible pair (z, f(u,u)) by applying the substitution

o1 ={z — flu,u)}.
We get

(Eldl,EQO'l) and
CORR(E101, B201) = {(E101, E201), (f(u, w), f(u,w)), (f(f(u,w),y),v), (u,u)}.

There is only one irreducible pair left which we eliminate by

o9 = {U — f(f(uyu)ay)}

It is easy to see that
Ero102 = Ez0o109

and that CORR(E1 0109, E20102) consists only of expressions of the form (s, ).

Unification can fail because of two reasons:
1) A strongly irreducible pair occurs.
2) There exists an irreducible pair of the form (z,t) or (¢,z) s.t. z € V(¥).

Note that if z € V(¢) (z occurs properly in ¢) then A(z) occurs properly in A(¢) for
every substitution A; thus, in this case, x and ¢ are not unifiable.

We have now the means to define UAL, a nondeterministic unification algorithm
for two expressions (Fig. 3.1). The while-loop of UAL is always terminating because
the number of variables in F19 U FEs¥ is less than in By U Es.

Theorem 3.4 UAL is a decision algorithm for unification. If {E1, Ea} is unifiable
then UAL yields a m.g.u. 9.

Proof: Let 1 be an arbitrary unifier of {E1, Ea}.

One shows by induction on k:

For every 9y (9 being ¥ after k executions of the while-loop) there is a py s.t.
ppr =mn. For k=0 9, =¢e and py can be set to 7.

Because UAL must terminate with a ko we have 9, pr, = 1, where py, depends on
7, but not kg and ¥y, ; thus ¥4, is a m.g.u..

If {E4, E2} is not unifiable then UAL must clearly terminate with failure because
E19 # E59 holds for all 9 and the while loop terminates.

UAL, or rather any deterministic version of it, is not very efficient because the
E;¥ are actually computed during the algorithm. On the other hand UAL clearly
reflects the properties of unification and is well suited for theoretical purposes.
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algorithm UAL;
begin

9 :=¢;
while E1?9 37& E2’19 Q(_)_
if there is a strongly irreducible pair in CORR(E1Y, Eo9) then

failure
else
Select an irreducible pair (s,t) € CORR(E19, Eo9);
if s € V then
a=g; F =1
else
a=t [f:=s
end if;
if o occurs in B then
failure
else
V= Ha B};
end if
end if
end while
(*¥isam.gu *)

end.

Figure 3.1: Unification Algorithm for £y and Fs
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3.4 The Resolution Principle

The characteristic of the resolution principle is the combination of the unification
method and of a propositional cut rule. Let

Cl - {Lla"‘an}v

Co={Mi,..., Mn}

be two clauses s.t. L? = M; for some 4,5, 1 <4 <n,1 <j<m. The formulas
Fy, Fy corresponding to Cy, Cy are:

Fy
Iy

(Vay) - (Vo) (L1 V-V L V-V L,) and
(Vy1) - (Vys)(My V-V MGV -2V My,).

e

By substitution and simple propositional rules we derive
L¢—LyV- VL1 VL V-V Ly

from Fy and
M — MV VMV My VeV My

from Fs.
But by M ng = L; and the valid propositional rule

I A L—B
AV B

we get
L1\/"'\/Li_l\/Li.H\/"-VLn\/Ml\/"'VM]‘_1VM]‘_H"~\/Mm.

But the last formula corresponds to the clause (Cy —{L;})U(Cz —{M;}). In case of
ground clauses, the derivation of the last clause already characterizes the resolution
principle, but for general clauses a combination with the unification principle is
required.

So far we are at the point to define the propositional resolution principle (which
on ground clauses coincides with the general one to be defined later).

Definition 3.8 Let C;,C5 be two clauses and L € C1, M € (5 s.t. L% = M. Then
(Cy — {L}U (Cy — {M}) is called propositional resolvent of Cy, Ca.

It is obvious that propositional resolution does not suffice for a complete refutational
calculus in clause logic, as clauses are universal forms representing infinitely many
quantifier—free disjunctions.
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Example 3.8 Let C be the set {C1, Cq,C3} of clauses with

Ch {P(z, f(2))},
Cy = {—“P(ar U)? Q(?})},
Cs = {=Q(=»)}.

We see that propositional resolution is not applicable to C as there are no com-
plementary literals. But by unifying {Q(v),Q(2)} with m.gu. 0 = {z « v} we
obtain

Coo = {‘\P((L;?}), Q(’L))}
and
Cs0 = {-Q(v)}.

Now propositional resolution yields
Cy = {-P(a,v)}.
In the next step we unify {P(z, f(z)), P(a,v)} with 0’ = {z « a,v « f(a)} and get
Cyo’ = {=P(a, f(a))},

Cio’ = {P(a, f(a))}.

Propositional resolution of Cyo’ and Cio’ yields {} (which we henceforth denote by
0) and we obtain a contradiction.

We are not through yet, as unifying only two complementary literals and applying
propositional resolution is not sufficient to refute all unsatisfiable set of clauses.
Moreover we will see that, without renaming variables in the two clauses used for
inference, inference may be either impossible or yield an inadequate result.

Example 3.9

C={{P@)} {~P(f(2)),QW)} {-Q(2), R(y), S(2)}}

In trying to resolve Cy,Cy we test W = {P(z), P(f(z))} for unification; but W is
not unifiable as = properly occurs in f(z). This is an unwanted effect, as names
of variables in clauses are meaningless (because they must be considered as gen-
eralized). This problem can be solved by renaming Cy to Cj = {P(z)}. Another
side effect takes place if we resolve Cy and Cs: By cutting out the Q-literals via
m.gu. 0 = {z «— y} we get Cy = {~P(f(x)),R(y),S(y)}. On the other hand we
could write C3 as {—Q(%), R(u), S(z)} without changing its semantics. But then we
obtain Cjy = {=P(f(z)), R(u),S(y)}; note that Cy’ is (strictly) more general than
Cy. Thus we see that renaming of variables is important to unification and to the
semantical status of the resulting clause.
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The next example shows that unification within (1) clauses is also necessary for
completeness.

Example 3.10
C={{P(z),P(y)}, {~P(w),~P(v)}}

Obviously C is unsatisfiable. Just take
Cy ={P(a)}, Cy = {-P(a)}

as ground instances of Cy, Cy; Cf and CY resolve to 0. Now suppose we may unify
complementary literals and apply the propositional resolution rule. Furthermore we
enforce renaming of clauses before resolution . Under these conditions we derive C3 =
{P(z),~P(v)} from C1,Cs and some variants of C5. But by renaming, selecting
potentially complementary literals, unifying and applying propositional resolution

-with C3 we only get variants of C; and Cy and the derivation cycles.This problem

can be solved by unification within Cy. Take W = {P(z), P(y)} and compute the
m.gu. ¢ = {x « y}; then the clause {P(y)} results by which (in two steps) a
contradiction can be obtained. ~

Unification within a clause is characterized by the following concept:

Definition 3.9 Let C be a clause, A C C and A # (. If A is unifiable by m.g.u. o,
Co is called factor of C. If | A |= 1 then Co(= C) is called a trivial, if | A |> 1 a
nontrivial factor of C' (in the latter case we have | Co |<| C'|).

Resolution with factoring and renaming is then defined in

Definition 3.10 Let Cy, C; be clauses with V(C1) NV (Cs) = 0.

Let C] be a factor of Cy and Cy’ be a factor of Cs.

Suppose that there are literals L € C;’ and M € Cy’ s.t. {L¢ M} is unifiable by
m.g.u. 0. Then (C] —{L})o U (Cy — {M})c is called resolvent of Cy and Cs.

It should be noted at this point that there are different definitions of resolution.
In some of them a resolvent is defined as

(Cro —{L}o) U (Cyo — {M}0)

instead of
(C —{L})ou(C; = {M})o

as in definition 3.10.
Indeed
Co—{L}o C (C—{L})o,
but the converse inclusion does not hold in general as the example
C={P(z),P(a)},L ={P(z)} and 0 = {x < a} shows.
The form
(Cio —{L}o) U (Cho — {M}o)
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is more natural as it is propositional resolution after application of unification, but
the form

(C1 = {L}o U (Cy = {M}o)

is better for theoretical purposes.
At least we have always

(Cro = {L}o) U(Coo — {M}o) C (C1 = {L})o U (Ch — {M})o.

The concept on the left-hand side can be found in the books of Changé& Lee [CL73]
and of Loveland [Lov78], while the right one (although defined in a different way) is
that of Robinson [Rob65]. The concepts in [CL73], [Lov78] can cause some unwanted
side effects in lifting which are analyzed in [Lei89].

The resolution calculus is based on resolution as single rule operating on sets of
clauses. Deductions are defined in the usual way.

Definition 3.11 A resolution deduction (R-deduction) of a clause C from a set of
clauses C is a sequence C1,...,C, with the following properties:

1) C,=C

2) For every i s.t. 1 < i < n we either have that C; is a variant of a clause in C
or C; is a resolvent of some variants of C;, Cy, for 7,k < 1.

An R-deduction of O from C is called R-refutation of C.

Example 3.11 (compare example 3.8)

{P(z, f(2))}, {~P(a,v), Q(v)}, {~Q(2)}}.
{P(z, f(z)}, {=P(a,v), Q(v)} {Q(f (a))}, {~Q()}, T;

I' is a R-refutation of C which can be represented more conveniently in the tree:

{P(z, f(z))} {~P(a,v),Q(v)}

C
r

{Q(f](a))}/{ﬂQ(Z)}
(|

Note that there may be different tree representations for one sequence. Deductions
could also be defined as trees (a priori), but we don’t need the tree concept of
deduction in this course.

Recall that C, as used above, is the clausal form of the negation of the theorem

G = [(Va)(3y)P(z,y) A (Fu) (Vo) (P(u,v) — Q(v))] — (32)Q(z2).
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Thus I' can be considered as a proof (by contradiction) of G.

R-deductions are always correct, as F'({C,Cs}) — F({C3}) is valid if C3 is resolvent
of C1,Cy (the “Robinson”-resolvent is always implied by a Chang&Lee-resolvent,
where the latter is defined by substitution and propositional resolution). But we
also need (refutational) completeness, that is the existence of an R-refutation if C is
unsatisfiable.

Theorem 3.5 IfC is an unsatisfiable set of clauses then there exists an R-refutation

of C.

Proof:(sketch) One first shows that (propositional) resolution is complete on sets of
ground clauses. Then let C be an unsatisfiable set of (general) clauses. By Her-
brand’s theorem there exists a finite set of ground instances C’ of clauses in C s.t.
C’ is unsatisfiable. By the completeness of propositional resolution there exists an
R-refutation I of C’.

By a technique (called lifting) it is possible to find a (general) R-refutation I of C
s.t. there exists a ground substitution n with ' = I"'.

The most essential (and hardest) step in the proof is the lifting of the ground refu-
tation. The lifting property is remarkable, because in R-deductions only m.g.u.’s
are allowed as substitutions; on the other hand arbitrary ground substitutions are
allowed in the definition of C’. Lifting is possible not only for ground refutations but
for arbitrary resolution deductions.

Theorem 3.6 (Lifting lemma)
Let C’ be a set of instances of clauses in C and let T be a R-deduction from I'. Then
there exists a R-deduction I' from C and a substitution n s.t. I'n =I".

Remark: Theorem 3.6 is formulated more generally as it is needed to prove theo-
rem 3.5 (ground instances suffice for this purpose). But theorem 3.6 is important
also in completeness proofs for subsumption type refinements, where the general
formulation is required. '

Of course theorem 3.6 has to be proved before theorem 3.5. The nature of

theorem 3.6 is purely proof theoretical, while semantical concepts are important in
theorem 3.5.
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Chapter 4

Resolution Refinements

4.1 The Concept of Refinement

From the logical point of view we might be satisfied at this point, as we have shown
correctness and completeness of the resolution principle. But the large number of
possible resolvents derivable from a set of clauses is a serious obstacle to practi-
cal applications. Thus it is significant that Robinson presented a paper on hyper-
resolution [Rob65a]—a refinement to be described later—in the same year as his
foundational paper on resolution [Rob65] was published.

The principal idea of a refinement is to restrict the R-deduction concept without
loosing completeness; under such restrictions there are less possible derivations and
the node degree of search trees (in implementations) is decreased. So one motivation
for restricting the R-deduction concept is efficiency. Another important application
of refinements is the construction of resolution decision procedures for (decidable)
clause classes; here the key idea consists in finding a refinement which is complete
and produces only finitely many resolvents (on the class under consideration).

Let us consider the concept of refinement generally and from a formal point of
view. First we define some mathematical notions describing the set of derivable
resolvents.

Definition 4.1 Let C be a set of clauses. Then R(C) is the set of all resolvents
which can be defined by (variants of) clauses in C, where R(C) is factorized under
renaming (there are no different clauses C1,C2 € R(C) which are variants of each
other).

Note that, by factorizing under renaming, we ensure that R(C) is always finite for
finite C.

Generally we write C/., for a set of clauses C after factorization under renaming.
R(C) is the set of clauses derivable within one step; the set of all derivable clauses
R*(C) can be specified as follows:

R'C) = C/~,
RHHC) = (RY(C) U R(R'(C)))/~,
R (C) = UZ,R(C)

Attention: R'(C) and R(C) are to be considered as different!
By the completeness of resolution we know that O € R*(C) if C is unsatisfiable. If

27
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there is a refutation tree of depth n for C then O € R™(C).

As already mentioned, R™(C) can be very large even for small n. Thus the idea is
to define an operator S s.t. S*(C) C R*(C) and O € §*(C) if C is unsatisfiable.

The restriction S¢(C) C RY(C) for all i > 0 is too general to make sense: Think about
the following method for the definition of the S*(C):

1. Search for an R-refutation I' of C. If there is no refutation then define S*(C) =
C/., foralli>0.

2. If ' is an R-refutation then define:

s°¢) = C/,
Si+1(C) = ({C]CinT, CeRR(C)}USC))/~

v

By this definition, clearly S*(C) C R¥(C) for all i and S*(C) = C/., for C satisfiable.
Although S defines a refinement in an abstract sense, it is unreasonable from a
practical point of view since unrefined resolution has been applied to define the
refinement. Moreover S* clearly is not recursive, because

(C is unsatisfiable and O ¢ C)
iff
(5%(C) #C/~, and D EC)

(thus a recursive computation of S*(C)—which is always finite—would give a decision
procedure for whole clause logic). Still very general but more reasonable is the
following definition.

Definition 4.2 A resolution refinement operator S is a mapping from sets of clauses
to sets of clauses s.t. it holds:

1. S(C) is a finite subset of R*(C).

2. S is recursive.

Again we define

e = C/n,
STHC) = (S(CYUS(SHCN)/~s
S1C) = UZ (0.

It is immediately verified that S*(C) C R*(C) for all set of clauses C. We did not
postulate S(C) C R(C), because there are practically relevant “refinements” which
do not fulfill this property. Definition 4.2 captures all relevant refinements which
don’t use deletion rules.
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4.2 Restrictions on the Resolvents of two Clauses

The restrictions analyzed in this chapter are local in the sense, that only the set of
resolvents defined by two clauses is made smaller, but there is no specific condition
on the form of deduction trees. Although there is a great variety of such local
refinements, we focus on two typical basic types:

1. A-ordering refinements, and
2. Locking refinements.

In A-ordering refinements the central feature is the ordering of atoms, which ensures
that only the largest atoms are resolved.

Definition 4.3 An A-ordering <4 is a binary relation on atoms with the following
properties:

(A1) <4 is irreflexive.
(A2) <4 is transitive.
(A3) For all atoms A, B and for all substitutions ¥, A <4 B implies AY <4 B9.
The property (A3) is important to ground lifting, as will be explained later.
Example 4.1 Let A, B be arbitrary atoms. We define A <4 B iff

1. 7(A) < 7(B) and

2. For all z € V(A): Tax(z, A) < Tmax(z, B) (and V(4) C V(B)).

Irreflexivity and transitivity of <y easily follow from 1. If Tax(z, A) < Tmax(z, B)
for all z € V(A) and 7(4) < 7(B) then for all ¥ € SUBST:

Tmax (Y, AY) < Timax(y, BY) for y € V(A9) and 7(AY) < 7(B9).
Thus A <4 B implies A9 <4 BY and property (A3) holds too.

For <4 we have P(z,z) <4 Q(f(z),y) and
P(mvy) <4 R(g(ac,y)),

but not P(x, f(a)) <a Qz, f(z)) (1 is violated)
P(z,a) <q P(f(a),z). (2 is violated)

Note that by (A1), (A2) and (A3) it is guaranteed that two atoms A, B with A <4 B
are not unifiable (otherwise we get A9 <4 BY by (A3) and AY = B9 for a unifier
9; but then (Al) is violated).

The ordering <4 is an ordering for atoms, not for literals. Thus in extending the
ordering to literals, the sign of the literal is insignificant:
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L<aM i at(L) <y at(M) for literals L, M.

According to our definition of refinement we have to specify an operator R« , defining
a set of resolvents obtained under the < 4 restriction. For this purpose we introduce
the concept of resolved literal.

Let C;,C5 be two variable disjoint clauses, C171, Cong factors of Cy, Cy and

(Cim —A{L1})o U (Conz — {L2})o

be a resolvent of C1,Cy then Lio, Loo are called the resolved literals, at(L;)o is
called the resolved atom. Note that the resolved literal is not the original one
(occurring in C), but the literal subjected to the m.g.u. of the resolution.

Definition 4.4 Let C be a set of clauses and <4 be an A-ordering. We define
C € R, (C) iff C is a resolvent of two clauses C1,Cy € C and for no literal L € C':
A <4 L where A is the resolved atom.

Example 4.2 Let C be the set {Cy, Cy} of clauses with

Cr = {=R(f(z),Q(f(z),2)},
Cy = {—'Q(yaz)vR(f(y )}

Then C3 = {Q(f(2),2),~Q(z,2)} is a < -resolvent, ie., C3 € R, (C), because
R(f(x)) is the resolved atom and there is no literal L in C3 s.t. R(f(z)) <a L.

Cy = {~R(f(z)), R(f(f(z)))} is in R(C) but not in R.,(C), because Q(f(z),z) is
the resolved literal and Q(f(z),z) <4 R(f(f(x))).

Note that A-ordering (as defined in [Joy76] and by us here) is an “a posteriori”-
ordering. Whether a resolvent is allowed or not is determined by comparing the
literals in the resolvent and the resolved literal. Thus it is not absurd to use (un-
restricted) resolution in the definition of a refinement. The a posteriori ordering
is stronger than an a priori ordering (defined on literals before application of the

m.g.u): Using <4 as an a priori ordering the resolvent (4 in example 4.2 would be

allowed, as there is no order relation w.r.t. <4 among the literals in Cy and Cb.

Definition 4.5 An A-ordering deduction is a resolution deduction Ci,...,C), s.t.
it holds: If C; is a resolvent of C}, Cy then C; € R, ({Cj, Ci})-

Example 4.3

C={{P(a)}; {=P(z), RB(x))}, {~R(y), R(f(y)}, {~R(f(f(a)))}}

The following R-deduction (represented in tree form) is a <g-refutation:
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{(=R(f(f(a)))} {=R(y), R(f(v))}

{=R(f(a))} {=P(z), R(f(z))}
{=P(a)} {P(a)}
m

Note that by starting from {P(a)} and resolving from “left to right” we do not get
an <g-deduction.

Theorem 4.1 A-ordering refinements are complete, i.e. if C is unsatisfiable then
O € RL (C) for every A-ordering  <a .
Proof: [KHG9).

Some remarks on the proof of theorem 4.1: As usual completeness is proved by
showing that 1) < 4-ground resolution is complete and 2) every ground < 4-deduction
can be lifted to a <4-deduction on the general clause level. It is for 2) that the
property (A3) in the definition of an A-ordering is really needed. Note that (A3)
cannot be replaced by the condition: A < B implies not(BY <4 Ad) (a rather
inexact but intuitively attractive form would be A <4 B = A9 <4 BY). To
illustrate this problem we define the following ordering:

A<, B iff V(A)cCV(B).

Clearly <, is irreflexive and transitive and V(A) C V(B) implies V(A¥) C V(B?)
(and therefore not (BY <, AY).

W.r.t. <, lifting is impossible; consider the following ground <,-refutation (note
that A <, B is impossible for ground atoms A, B).

M= {P(a"a)’@(a)}> {"Q(a)}v {P(CL, a)}.

Suppose that the general clauses are {P(z,y),Q(z)},{-Q(2)}. {P(z,y)} is not a
<,-resolvent as P(z,y) > Q(z) (Q(z) being the resolved atom). Therefore lifting I’
to a <,-deduction I' is impossible.

While A-orderings are atom orderings defined by syntactical properties of atom
formulas, locking (or indexing) is a quite different order type: Every literal gets a
number and inherits this number during deduction, where two identical literals may
get different numbers; resolution is only allowed on literals having the minimal index
inside a clause.
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Example 4.4 Let C be the set {Cy, Cy, C3} of clauses with

¢ = {-ﬂP(z’y),P(y,x)},
02 = {P(u,a)},
Cy = {~Pv,b)}.

We have

R(C) = {{P(a,w)}, {=P(b,v)}, {=P(z,y), P(z,y)}}-
Note that it is allowed to resolve Cy with a variant of itself, giving the tautological
clause {=P(z,y), P(z,y)}.

None of the resolvents in R(C) can be excluded by an A-ordering (however the
third resolvent could be deleted, because it is a tautology—a deletion method com-
patible with A-orderings). Particularly P(u,a) < P(a,u) is impossible for every
A-ordering because P(u,a) and P(a,u) are unifiable.

But by indexing literals we can change the situation:

1 2 3 4
{—jP(:u y)a P<ya :E)}a {P(u: CL)}, {_‘P('Uy b)}
Under the restriction that only literals with lowest index may be resolved—the other

. 2
literals are “locked”—we only get the resolvent { P(a,u)} (the index is inherited from
the second literal of C1). So we get

{(~P(2,9), P(g,2)}  {P(,a)}

(P(a)u)} {(~P(v,5)}

D/

As numbers are inherited, the order type of a literal within a clause depends
on the deduction of the clause. That.means this kind of ordering is deduction
dependent, while A-ordering is not. In lock resolution a clause cannot simply be
defined as a set of literals; instead we need the new concept of indexed literal.

as lock refutation of C.

Definition 4.6 A pair (L,i) where L is a literal and ¢ is a number is called an

indexed literal. A set of indexed literals is called an indexed clause.

It is not convenient that—within the same indexed clause—one literal appears
with two different indices; to overcome such a problem we apply the technique of
“merging low”.

Definition 4.7 An indexed clause is called reduced if (L,) € C, (L, j) € C implies
1= 7.
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The method to reduce a clause C is quite simple: Delete every (L,1) from C for
which a (L,j) exists s.t. j < . If C is an indexed clause we denote the (unique)
reduced indexed clause as r(C). For example we have

r({(P(2),1), (P(2),4),(Q(z),3),(Q(),2)}) = {(P(x),1),(Q(x),2)}.

Substitutions on indexed literals can be defined in a straight forward manner:

(L,1)9 = (LY,1),
and for clauses

{(L1,i1)y -y (Lnyin) 9 = {(L1,31)0, - . ., (L, in) 0}

Definition 4.8 Let (L,%) be a minimal indexed literal in the indexed clanuse C' and
let 0 be am.g.u. of {L,Ly,..., Ly} where (L1,%1), ..., (Lm,%m,) are indexed literals
in C. Then 7(Co) is called lock factor of C.

For
the clause

is a lock factor of C, but
{(P(a), 1), (P(y),2), (Q(a),2)}
is not.

Definition 4.9 Let Cy,C; be variable disjoint indexed clauses; Let C{, C% be lock
factors of Cy,Cy and (L,7) a minimal literal in C}, (M, j) a minimal literal in Cf.
Suppose that {L, M9} is unifiable by m.g.u. o; then

r((CL = {(L,)}e U (Cy = {(M,)})o)

is called lock resolvent of Cy and Cs.

Similarly to R and R, we can define a resolution operator Rjock, but we have to
take into account that Rj,q works on indexed clauses.

Theorem 4.2 Lock resolution is complete, i.e. if C is unsatisfiable then
0 € Rjpu(C)

(for every locking of C).

Proof: [BoyT1]

It is essential for the completeness of lock resolution that clauses with the same
literals but different indices are not identified.
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Example 4.5 To improve the readability of indexed clauses we write L* instead of
(L,4).

¢ = {{Pla),Rla)y {-Rlw), Pla)}, {Rla),~Plo), {-Pa),~Rla)}},

RL.(C) = cU{{R{e),~E(a)}, {Pla),~P(a)}}

R, (C) = RLa.(©U{{P(a),~R{a)}, {~P(a),~R(a)}}.
If we identify . .
{P(a),—R(a)}, and

3 4
{=R{a),P(a)}, and also the clauses

{-IP?a), ﬂR?a)} and

7
{=P(a), —»R?a)} then we get

R? . = RL . and thus

lock

Rikock = Rllock‘
But C is unsatisfiable and O ¢ R} , (C); we see that the identification above destroys

completeness. Note that in the clauses {P?a), —‘Rfa)}‘and {ﬂR%a,), lea)} the “index-
status” of the literals is different (P(a) is minimal in the first, but not in the second
clause). :

By deriving correctly we get the following continuation:

RE,(C) = R24(0)U{{~R(a)},{~P(a),~R(a)}},

6 2
{~P(a)} € Rjo(C), {R(a)} € R (C), O € R4 (C).
It follows O € R} .. (C).

Lock resolution is a very efficient refinement, but its weakness consists in its in-
compatibility with usual deletion methods. We will see in chapter 5 that tautology
deletion and subsumption destroy completeness.

4.3 Restrictions on the Form of Deductions

The most natural form of refuting a sentence is to start with the negated conclusion
of a theorem and to continue the derivation in a top-down manner.
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For illustration consider a theorem A; A --- A A, — C where the Ajs are gener-
alized disjunctions of literals and C is of the form (3%)(Lq A - -- A Lyy,) for literals L;.
For a proof by contradiction we consider A3 A--- A A, A—=C , which corresponds to
the set of clauses C = {C4,...,Cy, D} for D = {L4,...,L3}. In order to refute C
it is quite reasonable to start with the clause D, as deductions based on Ay,..., 4,
only may create lemmata which are of no importance to a proof of C. The following
form of deduction guarantees that the negated conclusion D is “present” in every
newly deduced clause:

D By
-
Dy Ey
-
Dn.~1 En

/

n
In the deduction above the E; are either variants of clauses in C or variants of
previously derived D; for j <.

Definition 4.10 Let C be a set of clauses and D be a clause in C. A sequence I':
Do, By, D1, ..., En, Dy '
is called a linear R-deduction of D,, from C if I is an R-deduction of D, from C s.t.
a) Dy =D,
b) every D; is resolvent of E; and D;_; for 1 <i < n.
D is called top clause ( of '), the D; are called center clauses and the Fj side clauses.

Linear resolution is not complete under all circumstances, because an inadequate
choice of the top clause may have bad effects.

Example 4.6 Let C be the set {Cy,Ca,Cs,C4s} of clauses with

G = {P@)},

C; = {~P(y),R(y)},
Cs = {~R(uw)}

Ci = {Qa)}.

C is unsatisfiable. But when Cy is selected as top clause, I' = Cy is the only linear
deduction possible; obviously I' is not a refutation. However, selecting C3 as top
clause we get the linear refutation:
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{~R(w)} [~P(y), R))
%P@)}/{P@:)}
O

The reason for the effect above is that {C}, Cy} can be considered as a (satisfiable) set
of axioms and Cj as negated conclusion. It is essential that {C1, Cy} is satisfiable, but
{C1, 0y, C3} is unsatisfiable. On the other hand, {Cy, Cs, (3} is already unsatisfiable
and, adding Cy, this status is not changed.

Theorem 4.3 Let C be an unsatisfiable set of clauses and D be a clause in C fulfilling
lfhe following condition: there exists a subset D C C s.t. D is satisfiable, but DU{D}
is unsatisfiable. Then there exists a linear refutation of C with top clause D.

Proof: [CLT73]

The theorem above shows that we need some knowledge and understanding of the
set of clauses (identification of “axioms”) before refuting them via linear resolution.
Linear resolution cannot be described by an operator Ry;,, which is defined on
sets of clauses; rather Ry, has to be considered as operator on sets of deductions.
Thus linear resolution does not fit the set theoretical definition of refinement in
section 4.1 (unless we label clauses by deductions).
A further refinement, called linear input resolution, can be obtained by restricting

the side clauses E; in definition 4.10 to input clauses. Linear input deduction,
however, is incomplete:

Example 4.7

C = {C1,C;,C3,C4}
= {P@),Q@)}, {~P(x),Qx)}, {P(z),-Q(x)}, {-P(z),~Q(x)}}.

Select Cy as top clause. Then Cy fulfills the requirements of theorem 4.3 and
there exists a linear refutation of C. However there can be no linear input refutation
of C; the reason is the following: Suppose that I' is an arbitrary refutation of C.
Then O is obtained by resolving two clauses Dq, Dy in ' which either are both unit
clauses or possess unit factors; but the input clauses (= the clauses in C) are neither

unit nor do they possess unit factors. It follows that T' cannot be a linear input
deduction.

Althqugh linear input deduction is incomplete on clause logic, it is complete on
Horn logic (i.e. the class of all sets of clauses consisting of Horn clauses only). The
completeness of linear input deduction easily follows from theorem 4.3.
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Theorem 4.4 Let C be an unsatisfiable set of Horn clauses. Then there exists a
linear input refutation of C with o negative top clause.

Proof: Note that every unsatisfiable set of clauses must contain negative clauses. So
let D € Cs.t. D= D_ and let D be a subset of C s.t. D is satisfiable, but DU {D}
is unsatisfiable. By theorem 4.3 we know that linear deduction is complete. That
means there exists a linear refutation I' = D, E1, D, ..., Fp, 0 of I' with side clauses
E;. But, as D is negative and all side clauses contain at most one positive literal,
all center clauses D; are negative. Because two negative clauses cannot resolve, all
side clauses F; must be in C; it follows that I' is a linear input deduction.

While linear input resolution is a restriction of linear resolution, set of support res-
olution is a generalization. Instead of selection a single top clause D we specify
a subset D of C (the "set of support”) s.t. every resolvent (ever derived) has an
ancestor from D. The set of support refinement admits a formalization via a set
operator in the sense of section 4.1:

R,(C) = C,SPY(C)=D,
RiF1(C) = Ri,(C)Uset of all resolvents from clauses in Ri;,(C) where at

least one parent is in SP*(C),
SP(C) = SPHC)U(RIE(C) — R, (C)),

sSSP
R:sp(c) = U;“;O Résp(C)
The completeness of the set of support refinement depends on the semantical
status of the set of support D.

Theorem 4.5 Let C be an unsatisfiable set of clauses and D C C s.t. C—1D s
satisfiable. Then there ezists a set of support refutation C with set of support D (for
SPY(C) = D we obtain O € R%,(C)).

Proof: Because C — D is satisfiable and C is unsatisfiable there exists a D € D and
a subset F C D — {D} s.t. (C— D) U F is satisfiable, but (C — D) U F U{D} is
unsatisfiable. Thus by theorem 4.3 there exists a linear refutation I' of C with top
clause D. But the set of all clauses derivable by linear deductions with top clause D
is also set of support - derivable, i.e. it is contained in Rf,,(C) w.r.t. set of support
D. It follows O € R, (C).

The proof of completeness for theorem 4.3 itself shows the usual pattern of argu-
mentation: Prove that for a finite, unsatisfiable set of ground instances C’ of C (C’
exists due to Herbrand’s theorem) there is a linear refutation I' of C'; afterwards
lift T’ to a refutation I" of C.
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4.4 Semantic Clash Resolution

Clash resolution is a variant of resolution where several resolution steps are con-
tracted into one single inference step. The single resolution steps in such a “macro”-
inference form a linear deduction and are defined by some “semantical” conditions.
There are several different definitions of semantic resolution; the most general one
is from Slage [Sla67], but we base our consideration on a concept which is closer to
Robinson’s hyperresolution [Rob65a].

The first step consists in defining specific Herbrand interpretations which we call
settings.

Definition 4.11 Let C be a set of clauses and { P4, ..., P,} be the set of all predicate
symbols occurring in C. A setting is a Herbrand interpretation which, for every F;,
assigns all ground atoms P;(t) to true or all P;(¢) to false (¢ is a ground term vector
of appropriate arity). The setting which assigns true (false) for all P;(%) is called
positive (negative) setting and is denoted by M, (M,,).

Settings represent some kind of “propositional” interpretation. Indeed, if propo-
sitional clause logic is considered, the concept of setting coincides with that of in-
terpretation; this is not the case for predicate logic.

Example 4.8

C
H

{P(@)}, {=P(z), P(f(2))},{~P(f(f(a))}};
{a, f(a), f(f(a)), -}

M, ={P(t)jt € H}, M,, = {~P(t)/t € H} are the only possible settings for C.
M ={P(a),~P(f(a)), P(f(f(a))),- .., P(f*(a)),~P(f*(a)),...}

is a Herbrand interpretation, but not a setting.
With respect to M, {P(a)},{~P(z), P(f(z))} are true, but {=P(f(f(a)))} is
false.

Definition 4.12 Let C be a set of clauses and M be a setting for C. A resolvent
of two clauses Cy,C5 in C is called M-resolvent if one of C1, Cs is false in M (note
that, by definition of a setting, two clauses both false in M are not resolvable).

For C and M,, from example 4.8 {=P(f(a))} is a M, resolvent, but {P(f(a))} is
not. The idea of semantic clash resolution is to produce clauses only which are false
in a setting M; this is not always possible within a single resolution step and thus
clusters, so called clashes, are resolved.

Definition 4.13 A semantic clash sequence is a sequence ~ of the form

(C;Dl,...,Dn)

R

J

o

4.4. SEMANTIC CLASH RESOLUTION 39

where C, Dy,..., D, are clauses in some set of clauses C, C is true and all D; are
false in a setting M for C. C is called nucleus, the D; electrons of v. Let Ry = C
Ri+1 = a M-resolvent of R; and D;y; for i < n (if it exists). If R,, (defined by a
n-step linear deduction with top clause C') is false in M (R,, may be 0O) then R,, is
called a semantic clash resolvent of v w.r.t. M.

Example 4.9

C = {C1,Cs,Cs} = {{P(2), Q(z,9), ~Q(=,9(y)), ~Q(z, f ()},
{Q(w,v), R(0)}, {Q(w, g(w), S(g(w)}}.

We define M,, = {~P(s), ~Q(s,t), ~R(s)/s, ¢ € H(C)}.

- Then v = (Cy;C2, C3) is a clash sequence w.r.t. M,, and

R() - Cl
By = {P(x),Qz,y),R(f(y)), ~Q(z,9(y))}
Ry = {P(2),Qz,z), R(f(x)), S(g(x))}

Rs, being purely positive, is false in M and is a semantic clash resolvent of ~.
Note that there are two possibilities to define R; out of v: Resolving the literals
=Q(z,9(y)) and Q(u,v) we get R} = {P(z),Q(z,y), R(9(y)),~Q(=, f(y))}; but R}
cannot be resolved with C3. We see that, in this case, v defines only one clash
resolvent, although generally there may be several of them.

The most common semantic clash refinements are positive — and negative hyperres-
olution. Positive hyperresolution is semantic clash resolution based on M,, (clash
resolvents consist of positive literals only), while negative hyperresolution is based
is based on M, (clash resolvents consist of negative literals only).

In the notation of resolution operators we define:

Ryem(C) = set of a clash resolvents w.r.t. M which are definable in C, and —as
always—

R(s)cm( ) = C/"’v7 Ri‘&%(C) (Récm(c) U Rsem (R scm( )))/Nv)

scm LJ Rscm

Theorem 4.6 Semantic clash resolution is complete, i.e. for every unsatisfiable set
of clauses C and for every setting M for C it holds O € R?,,.(C).

Proof: [Sla67] — via Herbrand’s theorem, completeness on sets of ground clauses and
lifting.

Positive hyperresolution plays an important role in Horn logic. Horn logic is the
class of clause sets I', where for every C € T' and every C € C, C contains at most
one positive literal. It is easy to verify that Horn logic is closed under resolution. As
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positive hyperresolution produces positive clauses (i.e. clauses with positive literals
only) and nothing else, and positive clause are unit- in Horn we get in fact a unit-
clause production method. In fact R}, (C) —Co (Co being the set of nonpositive
clauses in C) is a set of unit clauses; if C is satisfiable then this set may be interpreted
as a (minimal) Herbrand model of C. Thus if R, (C) is finite and O ¢ R (C)
we know (by the completeness of Rg.p,, that C is satisfiable and-at the same time-
have a description of a Herbrand model of C. Even in case of non-Horn clause
sets, semantic clash resolution is a powerful decision procedure and model building
procedure for some classes of clause sets, an aspect which will be discussed further
in chapter 6.

In case of Horn logic Rsepm,,, may be refined further: Nuclei can be considered as
lists, rather than sets, of clauses and only the last negative literal has to be resolved
away (in every stage of the clash resolution). This creates the fortunate effect that
every clash sequence defines at most one resolvent. -

o

R R

Y R

P

Chapter 5

Deletion Methods

5.1 Subsumption

During the search for a refutation a theorem prover generates a lot of useless, redun-
dant clauses even when strong refinements are applied. There is a specific kind of
redundancy which can easily be recognized in clause logic: Because the philosophy
of resolution is to work on the most general level only, clauses which are instances
(or contain instances) of previously derived clauses are useless (in the sense that
they cannot lead to shorter refutations).

Example 5.1 Let C be the set {Cy,Cs,C3,Cy, Cs} of clauses with

Cl - {P(Iﬂ,f(l')),R(x)},
Cy = {P(z,9),Q()},

Cy = {-R(f(2)),Q(f(=))},
Cy = {-Qy),~R(y)}

Cs = {~P(z, f(z))}

Consider the following refutation I':

{P(z, f(z)), R(z)} {=R(f (), Q(f(¥))}

Co ={P(f(y), f(f(), QU W)} {~P(z, f(z))}

41
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Now consider the clause Cg of the refutation. Cg is a substitution instance of Cj,
namely Co{z — f(y),v < f(f(y))}. Thus there is no reason to continue with Cy,
as using Cy directly leads to the shorter refutation A:

{P(z,y),Qx)} {=P(z, f(2))}

{=Q(y),~R(y)}

A is not only shorter than I', but also more general than the corresponding seg-
ment I'; of I' which starts with Cg; indeed every clause in I'; is an instance of the
corresponding clause in A.

Using the subsumption principle we recognize that Cg is redundant (w.r.t Cs)
and we don’t continue the derivation with Cg. There are different ways to modify
the derivation: Either we try to derive a new resolvent or we replace Cg by Cs.

In general we will delete clauses not only if they are instances of other clauses, but
also if they contain instances of other clauses. Note that if C9 C D for two clauses
C, D then D is redundant w.r.t. C: First we see that F'(C) — F(C?) is valid (where
F(F) is the formula corresponding to the clause E), then that F(CY) — F(D) is
valid (remember that a clause represents a generalized disjunction). We are lead to
the following definition:

Definition 5.1 A clause C subsumes a clause D (we write C' <; D) if there is a
substitution 9 s.t. C9 C D.

A necessary condition for the applicability of subsumption within a deduction process
is the decidability of the subsumption property. In fact subsumption is decidable, but
NP-complete [GJ79]; consequently all known algorithms are (at least) exponential.
Because subsumption tests have to be performed very often in order to be effective,
the efficiency of subsumption algorithms is of central importance to the performance
of theorem provers. A standard algorithm is that of Stillman [Sti73] where ¥ is
searched via depth first search; because of useless backtracking this algorithm can
become very expensive, especially when long clauses are involved. There are faster
algorithms based on the divide and conquer method [GL85].

R
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The subsumption principle is not only a method to control proof search, but it
can also be considered as a resolution refinement because of the following fact: If C
is unsatisfiable then there exists a nonredundant refutation I" of C, i.e. no clause C
appearing in I' is subsumed by a clause appearing before C in T.

Reconsider example 5.1:

I'=Ch,0s,Cs,...,C9, 0 is redundant because Cy <, Cj,

while
A = Ch,Cy,Cs,Cy,C5,C%, Cf, Cf, O is not redundant.

Subsumption can also be used as a pretext on a set of clauses C, i.e. to remove
subsumed clauses form C before the derivation starts. The logical justification is
obvious: If €, D are in C, C # D and C <, D then F(C) « F(C — {D}) is valid,
because F'(C) — F(D) is valid.

Using subsumption as pretext serves a double purpose: First it helps to reduce
redundancy in derivations and second it reduces the space of the representation
(which is essential to clausal knowledge bases).

There are the following ways to apply subsumption in proof search:

1. forward subsumption
2. backward subsumption
3. (total) replacement

In forward subsumption newly derived clauses are removed if subsumed by clauses
derived earlier. In backward subsumption clauses which are derived earlier, but
are subsumed by clauses derived later, are set inactive (till the search removes the
subsumption relation). In replacement, the set of derived clauses is completely
reduced under subsumption in every stage of the deduction. These different methods
can be modelled in the operator description for resolution. We treat the cases 1.
and 3. only. We first define R, — sub, the operator corresponding to the refinement
R, combined with replacement. «

Let sub(C) = C after removal of subsumed clauses. sub(C) is not per se unique, but
can be made unique by some specific selection strategy).

In sub(C) there are no clauses C1,Cy s.t. C; # Cy and Cy <, Cy. We define

RY —sub(C) = sub(C),
R —sub(C) = sub(Ry(RL — sub(C)) U R: — sub(C)),

R} —sub(C) = U RE — sub(C)
i=0

R; — sub models a very strong deletion method: Every subsumed clause is removed
no matter what is its position within the derivation. If C' subsumes a clause D
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derived before, then a completely new derivation with C instead of D is started.
R, — sub clearly is correct, but is impossible to extract a refutation of C directly if
O is found in R — sub(C). Note that applying sub to C as preprocessing is always
possible. Forward subsumption is weaker, but yields refutations of C directly. For
forward subsumption we introduce:

sf(C,D) {D/D e D,(AC €C)C <, D} and
R -fs0) = ¢

R, — £5(C) U sf(R;, — f5(C), Ru(RY, — f5(C))),

Ri+1 _ #5(C)

Ry — fs(C)

U RL - £s(0).
=0
R, — fsis a refinement in the sense of chapter 4, while R, — sub is not. The reason
is that RY — sub is not necessarily monotonic; indeed we may have
RL — sub(C) — R — sub(C) # 0.
As O <, C for all clauses C, we even have:
O € R, — sub(C) implies R., — sub(C) = {O}.

Subsumption is compatible with many refinements, that is: completeness is pre-
served under subsumption. E.g.,

Re, — fs, Rssp — [5,Rsc — sub (and thus Ry, — fs)
are all complete. But forward subsumption is not compatible with lock resolution:
Let unlock(C) = the “unlocked” clause corresponding to the indexed clause C.

Suppose now, we define C' <; D iff unlock (C') <, unlock (D). With this definition of

subsumption for indexed clauses, Rjoc;, — sf is incomplete, as the following example
shows.

Example 5.2 (compare to example 4.5)
Let

¢ = {{P(a), R(2)}, {=Bly), Py)}, {R{w), ~P{w)}, {~P{v),~R{v)}}.

We compute R}, ;. — fs(C):

Rloor, - £5(C) = CU {{R(z), ~R{x)}, {Ply),~Ply)}}.

Now

Riger (Rlocy, — £5(C)) = Riger — £5(C) U{{Plz), ~R{2)}, {~Ply), ~R{y)}}.
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But ) . .

{-Ry), Py)} <, (Ple), ~Rl2)}

and 7 8 6 8
{=P(v), "R(v)} <s {=P(y), ~R(y)}.
Therefore

$f (Riger = I5(C), Rioek(Riper, — £5(C))) = 0
and thus

Rlzock = fs(C) = Rjpey — fs(C).

But C is unsatisfiable and O ¢ Rj, . — fs(C); it follows that Rjpes — fsis incom-
plete.

We can overcome the problem in example 5.2 by omitting the technique of unlocking.
For this purpose we define for indexed clauses C,D : C' <, D iff there is a ¥ s..
C¥ C D (in complete analogy to the concept for ordinary clauses). Under this
definition lock resolution with forward subsumption (Rjec — fs) is complete. (Note
that the deletion steps in example 5.2 are impossible now).

5.2 Tautology-Elimination and Condensing

The purpose of subsumption is to test, whether a clause is redundant w.r.t. another
clause. But there may be clauses which, in some sense, are absolutely redundant;

this is the case for clauses which are tautologies, i.e. which contain a pair of com-
plementary literals. ‘

9

Example 5.3 Let
C={P(z)}UD, E={-P(),Pt)}UF

for some ¢t and V(C)NV(E) = 0. Then there exists a resolvent C; of C and E where
Ci={P(t)}UD{z —t} UF. But C <, C; and thus C; is redundant.

In most resolution refinements deletion of tautologies does not destroy completeness.
In fact it is easy to realize that all refinements which admit forward subsumption are
also compatible with tautology elimination. Like for subsumption, lock resolution

does not admit tautology elimination. First we define R, — T, the refinement R,
combined with elimination of tautologies:

® R} — T(C) = TAUTEL(C), where TAUTEL(C) = C after deletion of all
tautological clauses in C. ‘

R e e

e RiF' - T(C) = R. — T(C) UTAUTEL(R, (R, — T(C))).
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Let us consider example 5.2 again.

2 4 6
In the first generation the lock resolvents { R(x), ﬂREx)} and {P(y), ~P(y)} are both
tautologies. Therefore

Rlloclc - T(C) =C and Rl*ock - T(C) =C

for C from example 5.2; but C is unsatisfiable and thus Rj,c, — T is incomplete. Most
of the usual refinements admit forward subsumption and deletion of tautologies. If
R, is such a refinement, then we get complete refinements of type R, — fsT*

RY—fsT(C) = C

Il

R+ — f5T(C) Ri, — fsT(C) UTAUTEL(RL — fs(C)).

Ry — fsT is a refinement in the sense of chapter 4; If C is reduced under tautology
elimination then R} — fsT'(C) is free of tautological clauses. All complete refinements
R, — fs mentioned in section 5.1 also yield complete refinements R, — fsT.

While a tautology is also “semantically” redundant, there may be also some syn-
tactical redundance in representations of clauses; that is clauses of specific forms can
be replaced by shorter logically equivalent clauses without affecting completeness.

Example 5.4 Suppose that the clause C' = {P(z,2), P(f(y),2),Q(2)} appears in
a set of clauses C or was derived from C. Then

C' = {P(f(y),2),Q(z)}

is a factor of C' which, at the same time, is a subclause of C. Because F(C") — F(C)
and F(C) — F(C') are both valid, C and C’ are logically equivalent. C’ is a
“condensed” version of C' and we may replace C' by C’; note that this effect does
not occur if the literal Q(z) in C' is replaced by Q(z).

Definition 5.2 Let C be a clause. (' is called a condensation of C if " is a smallest
instance of C which is also contained in C.

Condensation is not unique ({P(z)} and {P(y)} are both condensations of

{P(x), P(y)}),

but different condensations are always variants of each other.

Although rarely used in “classical” theorem proving, condensing plays an impor-
tant role in resolution decision procedures, as it can prevent unlimited growth of
clauses; as an example consider the sequence of clauses

{P(z,21), P(z,33), ..., P(z,2,)}
having all the condensation {P(z,z1)}.

Formally we can define cond(C) as the set of all condensed clauses defined by
clauses in C. If p is an arbitrary refinement we define
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p — cond(C) = cond(p(C)).

p — cond is no longer a refinement in the strict sense, because p — cond(C) generally
is not contained in R*(C) (Syntactically new clauses may be built which cannot be
derived by ordinary resolution).

Condensing is compatible with A-ordering refinements [Joy76] and semantic clash
resolution [FLTZ92], i.e. Ry — fsTcond and R, — subcond are complete. Results
about compatibility of condensation are still rare, such as about its performance. At
least it can be said that to compute a condensation is at least as expensive as the
subsumption test [GF92].

5.3 Clause Implication

We have observed that C' <, D implies F(C) — F(D); it is natural to ask whether
the converse holds as well and whether subsumption and implication for clauses are
the same concepts. We will see in this chapter that this is not (at all) the case and
that there are barriers to the extension of redundancy tests.

First consider the tautology D = {=P(z), P(z)} and the clause C = {Q(y)}. C
does not subsume D, but F(C) — F(D) is clearly valid. So one might guess that
tautologies are an exception and that, for “reasonable” clauses, subsumption and
implication coincide. Again there is the following counterexample:

Example 5.5
C={-P(z), P(f(2))}, D ={=P(a), P(f(f(a)))}.

C does not subsume D because there is no ¥ with Ci¥ C D. On the other hand
F(C) — F(D) is valid. To prove this fact produce the two substitution instances

{=P(a), P(f(a))}, {~P(f(a)), P(f(f(a)))}
from {-P(z), P(f(z)}; then propositional resolution gives {—P(a), P(f(f(a))}.

In example 5.5 C' is capable of resolving with a renamed copy of itself. The obtained
resolvent B = {=P(z), P(f(f(x)))} is not subsumed by C, but E <, D. Generally
it can be shown that, for nontautological clauses D, F(C) — F(D) is valid iff there
is a clause £ € R*({C}) s.t. E <, D. This property follows from the theorem of
Lee [Lee67], which states that for sets of clauses C and nontautological clauses D:
F(C) — D iff there exists an £ € R*(C) s.t. E <, D.

Clause implication can be used as preprocessing in order to reduce redundancy
before derivation. But unfortunately (and contrary to subsumption) clause implica-
tion is undecidable [Sch88]. Being undecidable, clause implication in its general form
can hardly be applied as “realistic” redundancy principle in clause logic. However
there are many cases where clause implication is decidable. First of all, consider
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F(C) A—F(D) as negated form of the problem. Clearly F(C) — F(D) is valid iff
the Skolemized form of F(C)A—=F (D) is unsatisfiable; note that the Skolemized form
of F(C)A-F(C)is {C,{L},...,{L},}} where the {L!} are unit ground clauses.
So we have transformed the clause implication problem to a satisfiability problem
in clause logic.

For example 5.5 we get the set of clauses

C={{=P(z), P(f(2))}, {P(a)}, {~P(£(f(a)))}}.

We prove that C' implies D by deriving a contradiction from C. E.g.,

{(~P(@), P(f(2)}, {(=P(f(f(@))}, {~P(f(a)}, {=P(a)}, {P(a)}, D.

As the clause implication problem is undecidable and resolution is complete, we can-
not expect that resolution always terminates on satisfiable clause sets C representing
clause implication. More concretely: For every complete resolution refinement R,
there must be a satisfiable set of clauses C (representing F/(C) — F(D)) s.t. R:(C)
is infinite. In chapter 6 we will investigate resolution as decision procedure (on de-
cidable classes I') and guarantee termination of complete refinements R, on I
One such decidable class is

P={C| forall CeC:|V(C) < 1};
it follows that F'(C) — F(D) is decidable for
V(C)| <1 ({C}Uclf(=D)isinT).

Very recently the Horn clause implication problem was shown undecidable [MP92];
formally this decision problem is represented by {(C, D) | C Horn, F(C) — F(D)}.
The Horn clause implication problem, naturally occurs in the attempt to reduce
redundancy of logic programs. By representing the Horn clause implication problem
as clausal class we get forms C = {C,{K1},...,{K],}} where C is a Horn clause
and the K are unit ground clauses. Some subclasses of the Horn clause implication
problem have been decided by means of positive hyperresolution. As C is a set
of Horn clauses with the only nucleus C, positive hyperresolution only derives unit
clauses which are instances of the positive literal in C; this makes it possible (for some
forms of C') to compute uniform depth-bounds for the unit clauses to be computed
and thus to get a decision procedure. For details we refer to [Lei90], [Rud91].

The clause implication problem F(C') — F(D) is trivial if C' does not resolve
with a renamed copy of itself. In this case the theorem of Lee yields that C must
subsume D (as R*({C}) = {C}) or D is a tautology. Thus for “nonresolving” C'
clause implication essentially coincides with subsumption.

It is not investigated how clause implication (provided it can be tested effectively)
behaves as redundancy technique during deduction. It might be that clause impli-
cation destroys completeness, where subsumption is allowed. There are some trivial

s S
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cases where clause implication may be applied like forward subsumption, simply
because it must coincide with subsumption.

In positive hyperresolution only positive clauses are deduced. But a positive
clause can only be implied by another positive clause (for C nonpositive, R*({C'})
does not contain positive clauses). But because positive clauses are incapable of self-
inference the problem reduces to subsumption. A similar situation (only negative
clauses) holds for linear input resolution with negative top clause in Horn logic.
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Resolution as Decision Procedure

6.1 The Proof Theoretical Approach to the Deci-
sion Problem

In chapter 3 we have seen that for every unsatisfiable set of clauses there exists a
resolution refutation. In chapter 4 and 5 we have shown, how the deduction concept
can be refined under preserving completeness. Suppose now, we start a theorem
prover on an arbitrary set of clauses, possibly on a satisfiable one; satisfiable sets of
clauses occur naturally in clausal knowledge bases or in theorem proving problems
which are not sufficiently axiomatized. From Church’s result [Chu36] we know that
(the validity problem of) predicate logic is undecidable; it is easily verified that the
validity- and the satisfiability problem are recursively equivalent. Now let F be a
sentence of predicate logic. By techniques defined in chapter 3 we can transform
F to a set of clauses C s.t. F and C are satisfiability equivalent. An immediate
consequence is the undecidability of the satisfiability problem for clause logic (in
shorthand: clause logic is undecidable). As resolution is complete for clause logic
we can conclude that there must exist a set of clauses C s.t. R*(C) is infinite and
0 ¢ R*(C). (Otherwise we would get a decision procedure).

Moreover there can be no (recursively defined) refinement R’ s.t. R’ is complete
and R™(C) is finite on all satisfiable set of clauses C. This fundamental negative
result does not imply that it is senseless at all to use resolution as decision procedure;
instead we have to focus on decidable subclasses of clause logic and to investigate
the behaviour of resolution on such classes.

The area of mathematical logic commonly named the “decision problem” origi-
nated in the begin of this century. One of the first results on decidability of predicate
logic classes was obtained by Lowenheim in 1915 [Léw15]; he proved the decidabil--
ity of the monadic class, i.e. the subclass of closed function-free first order formulas
with one-place predicate symbols only. In the time between world war I and world
war II (and before Church’s fundamental result) many new decidable predicate logic
classes have been found. We mention the prefix classes (i.e. prenex, closed formula
with function free matrix) V3* (the Ackermann class [Ack28]), VW3* (the Godel-
Kalmar- Schiitte class [G6d32]) and 3*V* (the Bernays- Schonfinkel class [BS28]).
The method to prove decidability of these classes was a model theoretic one: Prove
that the class (I') is finitely controllable, i.e. if some formula in I is satisfiable then
it also has a finite model. As the PL-formulas having finite models are recursively
enumerable such classes are decidable (just run a complete theorem prover and a

o
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model finding procedure in parallel). This model theoretic method of argumentation
has two main disadvantages:

a) the proofs are relatively complicated

b) there is no valuable information for the design of decision algorithms (exhaus-
tive search is not the best one can think of).

As already sketched in section 5.3 there exists a proof theoretical alternative in
handling the decision problem of a PL-class ' (we speak about the satisfiability
problem): Find a complete refutational calculus  for PL s.t. only finitely many
derivations are possible on formulas in T, then € can be used for the following de-
cision procedure:

For I € I' compute all possible deductions on F' (the set A); if A contains a contra-
diction then F' is unsatisfiable, else F' is satisfiable. Such a method (although for the
validity problem and thus for the dual prefix class) was used by S.Y.Maslov in 1964
[Mas64] to prove decidability of the class 3*¥*3*Krom (where “Krom” stands for a
matrix in Krom form). He used the so called inverse method, which can be consid-
ered as a version of the resolution method based on the sequent calculus. A typical
feature of his method (and of resolution) is the use of the unification principle. Note
that for decision purposes, calculi are needed which cannot produce infinitely many
different formulas in one step (a tool to get such a “finiteness”-condition by restric-
tion of the substitution rule is unification). So the unification principle is not only a
powerful principle in the design of computational algorithms, but also a useful tool
for proving theorems about decidable classes.

In the same spirit as Maslov, but on the basis of the resolution calculus, Joyner
showed in his thesis [Joy73] that resolution theorem provers can be used as decision
procedures for some classical prefix classes. His idea is basic to all results presented in
this chapter: For a (decidable ) class I' (being the clause class corresponding to some
PL-class) find a complete resolution refinement R, s.t. R:(C) is finite for all C € T'.
To get a decision procedure even less would be sufficient (R, must be complete on I’
and R;(C) must be finite for satisfiable C € T'). Although Joyner investigated clause

forms of prefix classes only, his method can be extended to classes which are not of

the “prefix type” (that means prenex and function free). A typical example of such a
class is the set of all closed PL-formulas containing only one V-quantifier and having
full functional structure otherwise [Gur73]. In more recent time decidability results
for several functional clause classes have been obtained by resolution [FLTZ92]; some
of these classes will be discussed in this chapter. -

Being complete resolution refinements, resolution decision procedures can be used
as “ordinary” theorem provers. Because these refinements are (mostly) very strong
and favour the production of clauses having low complexity, they prove to be quite
efficient in practice.
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6.2 A-Ordering Refinements as Decision Proce-
dures

In section 6.1 we mentioned the Ackermann class V3* and the class YA/ where M is
an arbitrary matrix which may contain function symbols. By Skolemization we can
reduce the decidability of 3*V3* (the extended Ackermann class) to that of VA/. On
the other hand, ¥M contains formulas which cannot be obtained by Skolemization
from the class 3*v3*. If, in VM, M is transformed to conjunctive normal form we
obtain the clausal class

VARL = {C|forall C € C: [V(C)| < 1};

Note that we may rename the variables in different clauses. Thus VARI semantically
corresponds to the set of all clause sets C with [V(C)| = 1.

Example 6.1 (compare to example 4.3) Let C be the set {Cy, C2, U3, Cy} of clauses

with
¢ = {P(a)},
Cy = {~P(z),R(f(z))},
Cs = {-R(y),R(f(¥)}
Cy = {-R(f(fO))}

C is obviously an element of VAR1. It is easy to realize that C is satisfiable. Moreover
R*(C) is infinite, as for all n > 1

{R(f"(a))} € R*(C).

Thus unrestricted resolution does not terminate on C and consequently cannot serve
as decision procedure on VARI. Positive hyperresolution Rpy does not terminate
either, because (again)

{R(f™(a))} € Rpy foralln > 1.

Now remember the A-ordering <4 defined in section 4.2:
A<y B iff

(1) 7(A) < 7(B) and
(2) For all z € V(A): Tmas (2, A) <d Tmae(, B) (what implies V(A4) C V(B)).
{R(f(a))} & R%,(C). Instead we get
R, (C) = CU{{=R(f(0))}, {=P(f(0))}, {~P(b)} {=R(b)}}-

So R (C) is finite and O ¢ R% (C), and we have shown that C is indeed satisfiable.
It can be shown that R, always terminates on VAR1 [Fer9la] and we get:
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Theorem 6.1 R., (+ condensing) is a decision procedure for VARI, i.e. for all
C € VARL: RL (C) is finite.

Corollary 6.2 R., is a decision procedure for the extended Ackermann class.

VARI can be generalized to a clausal class fulfilling the following conditions: All
literals in a clause contain the same variables or are variable disjoint and every
function symbol in a literal containing variables contains all of them. More formally
we define:

Definition 6.1 A functional term ¢ is called weakly covering iff for all nonground
functional subterms s of ¢ we have V(s) = V(¢). An atom or literal A is called
weakly covering iff each argument of A is either a ground term, a variable or a
weakly covering term s.t. V(¢) = V(A). Let E* = {C | 1) A2)} where

1) for all ' € C: All literals in C' are weakly covering, and
2) for all C € C and L, M € C: Either V(L) = V(M) or V(L)YNV(M) = 0.

Clearly, E* contains VAR1. Unfortunately, we have no proof yet that £ can be
decided by R.,. Instead one takes a slightly different A-ordering <,, and combines
it with a saturation method. Saturation is a method which, after computation of
the set of resolvents, adds a finite set of instances of the resolvents (a set of instances
which cannot be generated by resolution or factoring). Saturation techniques are
also required to decide the Gédel class Y¥Y3*, Maslov’s V*3*Krom class, and the
Skolem class([Joy76], [Fer91]). Saturation is a deviation from the pure resolution
paradigm, as substitutions are involved which are not m.g.u.’s. From the classical
prefix classes, the monadic class and the extended Ackermann class can be decided
by “pure” resolution. The Herbrand class (i.e. the set of all C consisting of unit
clauses only) is even decidable by unrefined resolution (and thus by any refinement)
The argumentation is as follows:

Let C = {U1,...,Upn} be a set of unit clauses. C is unsatisfiable iff O € R* (C). But
because there are only unit clauses in C, we either have R(C)=0or R(C)={O}. A
simple decision procedure consists in applying the unification algorithm to all sets
{L¢, L;} where i # j and Uy = {Ly). "

6.3 Semantic Clash Resolution as Decision Pro-
cedure

Refinements based on A-ordering or on other ordering refinements do not suffice
to get decision procedures for all relevant decision classes. Particularly in the case
of the Bernays-Schonfinkel class (3*V*—prefix class) and of many functional clausal
classes, semantic clash resolution is superior to ordering refinements.
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We start our investigations with a subclass of the Bernays-Schonfinkel class,
namely the class of all closed formulas of the form (3*Z)(V*y)M (%, %), where M is
a Horn formula. The corresponding clause classes for the Bernays-Schonfinkel class
and for the subclass defined above can be defined as:

e BS={C|7(C) =0} and
e BSH={C|7(C) =0, C is a set of Horn clauses}.

The condition 7(C) = 0 guarantees that there are no function symbols in C; in fact,
the Skolemization of a prefix form 3*V* only generates new constant symbols.

There is a trivial proof of the decidability of BS and BSH based on Herbrand’s
theorem: Take a C € BS, compute the set of all ground instances of clauses in C (this
set is finite!) and test this set for satisfiability. In this case (provided the theorem of
Herbrand is available), the model theoretic method to prove decidability is clearly
superior to the proof theoretic one. However the computation of C’ (the set of all
ground instances from clauses in C) may be very expensive from the computational
point of view. Moreover BS, although easily proved to be decidable, is of highest
computational complexity among the classical prefix classes [DL84].

Example 6.2

C {C1,C5,C5,Cy}
{{P(CL?b)}v{_'P(a:)y>ap(y7:c)}7{_'P(x’y)v_'P(ysz)ap(xwz)}a{_'P(bac>}}‘

Cs denotes symmetry, C3 transitivity. C is satisfiable because P(b,¢) cannot be
derived from P(a,b) via symmetry and transitivity. It is easy to see that any A-
ordering must fail as decision method on C, as no clause deduced from C,, Cs can
be excluded by the ordering criterion (the literals in the resolvent always unify with
the resolved literals). Thus for any A-ordering <4 R%  (C) contains R*({Cs,C3})
which is infinite; moreover none of the clauses

Cn : {"lP(l'l,IZIQ),’WP(.’IIQ,.’Eg), e ,—‘P(.’En_l,xn),P(le,mn)} € R*({CQ7O3}))

Il

can be removed by subsumption or by condensing. However BSH can be decided
easily by Rsem,. In fact

Riem, (€) = CU{{P(b,a)},{P(a,a)}, {P(b,b)}}.

Moreover, a well-known fact in data-base theory, the set

{P(a,0),{P(b,a)},{P(a,a)},{P(b,b)}}
defines a minimal Herbrand model of C.

Positive hyperresolution (Rgerm,) decides BSH, because the set of all positive unit
clauses U with 7(U) = 0 over the term universe of a set of all positive unit clauses
C is finite (under renaming) and R}, (C) — Co (where Cy is the set of nonpositive
clauses in C) is a subset of this set. We might hope that semantic clash resolution

will do the job for the whole class BS. Unfortunately this is not the case:
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Example 6.3

C= {{P(a:,z,u),ﬁP(x,y,u),—wP(y,z,u)},{P(:c,a:,a)},
{=P(z,z,u), P(z,y,u), P(y, z,u)}, {~P(z,z,b)} }.

C is essentially non-Horn (it cannot be transformed to a set of Horn clause by
changing the signs of the literals). Both positive and negative hyperresolution don’t
terminate on C, because clauses of arbitrary size are derivable which cannot be
deleted by subsumption and condensing. Moreover no “standard” refinement is
known to terminate on C; an exception is general semantic clash resolution as defined
in Slagle’s paper [Sla67], which is based on arbitrary interpretations of clause sets.

So we face the fact that no standard resolution refinement decides BS. It is trivial
that adding saturation is an escape (because the Herbrand universe is finite). We will
see later in this chapter that there exists a nontrivial very limited form of saturation
which also does the job.

In the next part of this chapter we characterize some functional clause classes
which can be decided by semantic clash resolution. These classes can be considered
as generalizations of DATALOG.

Let M be an arbitrary setting for a set of clauses C. For every C € C we define
Cheg as the maximal subclause D of C' s.t. D is false in M; Cpos = C — Cheqg. The
set of false clauses in C can then be defined as

Creg = {C | C € C,Cheg = C},
the complementary set as

Cpos = C — Cpey-

Definition 6.2 A set of clauses C belongs to the class PVD (positive variable dom-
inated) iff there exists a setting M for C s.t. for all C' € C:

PVD-1 V(Cheg) < V(Chos),
PVD—Z Tmax<$7 On@%) S Tmax(w7 CPOS) fOI‘ a'n LA V(Cneg)'

DATALOG (including negative query clauses) is a simple subset of PVD, as neg-
ative setting (Cy = Cheg, C— = Cpos) fulfills PVD-1, PVD-2. PVD-1 implies
that for Cpos = 0 we must have V(Cheg) = 0, i.e. semantically false clauses are
ground. Restricted to BS and M, (syntactically) positive clauses must be ground
and V(Cy) C V(C-) for all clauses in C.

By changing signs appropriately, PVD can be reduced to PVDN s.t.

PVDN-1 V(C4) € V(C-) and

PVDN-2 Tmax(z,C1) < Tmax(z,C-) for all z € V(Cy).
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Theorem 6.3 Semantic clash resolution decides PVD, i.e. for every C € PVD and
every setting M fulfilling PVD1),PVD2) R}, (C) is finite.

PVDN is relatively sharp w.r.t. to undecidable classes: If we add the clause
I~ = {~1P(;c> Z),P(.’E,y), P(y)z)}7

which does not fulfill PVDN1) we can encode the word problem for arbitrary equa-
tional theories. It follows that

I'={CU{T"}IC € PVDN}

is an undecidable class. The proof of theorem 6.3 consists of two parts: First show
that all clauses in R, ,(C) — Cpos are ground; afterwards show the existence of a
number d s.t. 7(C) < d for all C € R%,,,(C). Because there are only finitely many
ground clauses of fixed depth (over the Herbrand universe of C) R},,,(C) must be
finite.

The class PVD can generalized by replacing PVD2) by the condition T'(Cpeg) <
T(Cpos) where T is an arbitrary atom complexity measure fulfilling some very general
axiomatic properties [Lei92].

Because BS is not a subclass of PVD we cannot hope to decide BS via semantic
resolution directly. However there exists an easy method to transform a set C € BS
into a set ' € PVDNBS under preservation of sat- equivalence. C' is obtained from
C by limited saturation on clauses which do not fulfill V(Cheg) € V(Chos). After
transformation of C to C', Rseaq can be applied as decision procedure on C'.

By these considerations we come to a decision algorithm for the Bernays-Schon-
finkel class, listed in Fig. 6.1. It is easy to verify that C' ~s; C and C" € PVD;
therefore BSALG is indeed a decision procedure for BS: Crucial for the performance
can be the adequate selection of the setting M; in case C ¢ PVD some heuristics
have to be applied (e.g. minimizing the number of clauses violating PVD1), PVD2)).

If R%.,, (C) terminates on a set of Horn clauses C from PVDN then the derived
positive clauses are all unit and ground. In this case we know more than just that
C is satisfiable; here R, (C) directly represents a Herbrand model (namely the
ground atoms which must be set to true).

6.4 Decision Procedures as Theorem Provers

Experimental results have shown [FLTZ92| that resolution decision procedures can
be used as powerful “ordinary” theorem provers. Particularly it turned out, that
theorem provers R, are fast on sets of clauses C where C belongs to a decidable class
decided by refinement R,. Of course this observation cannot be transformed into a
general (always applicable) method, as clause logic cannot be obtained by a finite
union of decidable classes. However it makes sense to proceed as follows:

{Input is a set of clauses C to be refuted}
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BSALG (* input is a set C € BSALG *)
begin
Case a) C € PVD: (' :=C;
Case b) C ¢ PVD:
begin
Select a setting M for C;
for all C' € C compute T(C):
ﬁ V(Cneg) c V(Cpos) E.hgl_

1 T(C) = {C}
_dT_(fC) = {CX| dom(A) € (V(Cueg) = V(Cpos)), 18(2) € H(C)}
end_fc:;;ﬁ
¢ = |J 1)
cecC
end;
Compute Rf, (C)

end.

Figure 6.1: Decision Procedure for the Bernays-Schonfinkel class

1) Try to locate C in some decidable classI' € CL {CL is a finite set of decidable
classes}

2) If C €T for some I' € C'L then compute R:(C) {Rr is the refinement deciding
I}
else

begin {heuristics}
find a T' € CL which is the “closest” to C
and compute R (C)

end

Point 1) is computationally easy for most “reasonable” decidable classes I', as mem-
bership in a class mostly is determined by simple syntactical properties. Even if
the syntactical properties are more complex (such as for PVD) it pays out to spend
this effort, by which hours of computing time may be saved. Suppose now that we
have found a I' € CL and C € T'; it is by no means mysterious that Rp is fast on
C, because a decision procedure necessarily favours the production of clauses having
low complexity (term depth and clause length must be bounded, frequently they do
not increase at all). If C ¢ T for all T € CL we face the challenge to select a refine-
ment Rr although C does not belong to the corresponding decision class. Although
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such a selection must be of heuristical nature (see the procedure defined before), the
corresponding heuristic can be logically motivated. Suppose for example that C ¢ I’
but D € I' for a subset D € C; then we know that R:(D) is finite. Therefore we
may “saturate” D by first computing Rj:(D) and then apply a theorem prover R’ to
(C—D) U Ry(D) (provided O is not already in R:(D)).
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Chapter 7

Complexity of Resolution and Function
Introduction

7.1 The Length of Resolution Proofs

Because clausal predicate logic is undecidable, there can be no recursive bounds on
the length of refutations of clause sets C in terms of the length of C; thereby it
does not matter what logical calculus and what concept of length is chosen. Thus
we cannot develop a complexity theory similar to the theory of propositional proof
systems. But there remain two possible mathematical approaches to predicate logic
proof complexity:

a) Analyze the relative complexity of resolution versus other inference methods
and

b) Find some absolute complexity measure for sets of clauses which is independent
of deduction concepts and which can serve as a basis for complexity analysis.

The book of E.Eder [Ede92] is based on approach a) and gives a lot of relative
complexity results for first order calculi (among them also resolution). In [BL92], a
paper which mainly focuses on resolution complexity, Herbrand complexity is taken
as absolute basic measure. Herbrand complexity is the minimal number of ground
clauses (defined by ground instances of clauses in sets of clauses C) required to get
(propositional) unsatisfiability. Because, by Herbrand’s theorem, every unsatisfiable
set of clauses C' possesses a finite, unsatisfiable set of ground clauses C’, Herbrand
complexity is well-defined and deduction-independent. In analyzing the length of
R-refutations relative to Herbrand complexity, the set theoretical clause concept be-
comes problematic; rather it is convenient to represent a clause as disjunction or
as an atomic sequent. Moreover it is advantageous to separate factoring from the
resolution cut rule and to split factoring itself into a substitutional and a contraction
component. A resolution proof is then defined as sequence of clauses like in defini-
tion 3.11. Instead of presenting the whole formal apparatus developed in [BL92] we
give some illustrating examples.

Example 7.1

['={P(z), P(a), R(x)},{=P(y), Q(y)}, {E(a), Q(a)}
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is a R-deduction according to definition 3.11. By formalizing clauses as disjunctions
and by separating substitution from contraction we get

I' = P(z)VP(a)VR(z), P(a)V P(a)V R(a), P(a) VR(a), = P(y) VQ(y), R(a) V Q(a).

Note that we did not instantiate —P(y) V Q(y) to =P(a) V Q(a) but preserved the
usual resolution rule (the instances of clauses under m.g.u.’s for binary resolution
are not added to the sequence).

e I can directly be translated into the following ground deduction I for
o I = P(a)V R(a), P(a)V P(a)V R(a), P(a)V R(a),~P(a) vV Q(a), R(a) V Q(a).
o I =T'nforn={z«a,y<al

We call I'"" a ground projection of IV,

Definition 7.1 Let Il = (4, ..., C, be a R-deduction from C. IT' is called a ground
projection of 1T if it holds:

1) II' is a R-deduction from a set of ground instances C’ of C.

2) There exists ground substitutions Ay,..., A, s.t. II' = C1 A1, ..., Cpdn.

Ground projections are, in some sense, inverse to lifted refutations. As every ground
R-deduction can be lifted to a general R-deduction, we may ask whether the other
direction holds too, i.e. whether every R-deduction possesses a ground projection.
But this is not the case:

Example 7.2
C = {~P(z) vV P(£(z)), P(a), ~P(f*(2))}

We define the following R-refutation IT of C (variants of clauses required for resolution
are added to the sequence explicitly)

I ==P(z)V P(f(z)),~P(y) vV P(f(y), ~P(z) V P(f*(z)), ~P(y) V P(f*(y)),
~P(z) v P(f*(z)), P(a), P(f*(a)), ~P(f*(2)), D.

The basic idea in the proof II is iterated self-resolution of newly derived clauses.

IT has no ground projection, because for the 4th clause in II there exists no adequate
instance to get the 5th one; an exact proof of this fact is given in [BL92]. The
following argumentation serves as proof sketch:

Start with

~P(a) vV P(f(a)), ~P(f(a)) V P(f*(a)),~P(a) V P(f*(a)).

At this point it is impossible to produce the clause —=P(f%(a)) V P(f%(a)), as it is
neither a ground instance from C nor derivable from the clauses listed in the sequence
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so far. Thus the sequence cannot be extended to a ground projection. We see that
there are R-deductions without ground projections. However there are resolution
refinements admitting ground projections such as linear input deductions. Let C be
an unsatisfiable set of clauses; we define the Herbrand complexity of C as

H(C) = min{|C'] |C’is an unsatisfiable set of ground instances from C}.

By (') (length of deduction I') we denote the number of clauses occurring in I’
(multiple occurrences are counted).

Proposition 7.1 Let C be an unsatisfiable set of clauses and I1 be a ground R-
refutation of an unsatisfiable set of ground instances C' (from C). Then HC(C) <
I(IT).

Proof: II can only be a refutation if the set of all clauses D appearing in II is
unsatisfiable. By definition of HC, HC(C) < |D|. |D| < I(II) is evident by definition
of 1.

Corollary 7.2 Let II be a refutation of C which has a ground projection; then
HC(C) <I(ID).

Proof: For every ground projection II' of IT we have I(I') = [(I).

A consequence of the corollary is that Herbrand complexity is a lower bound to
the length of linear input refutations. Because, as we already know, there are R-
refutations without ground projection, we cannot conclude that Herbrand complex-
ity provides a lower bound to all R-refutations; instead we get the following result:

Theorem 7.3 There exists a sequence of clause sets (Cp)nen s.t. Cp is refutable by
R-refutations I'y, with I(T'y,) = 2n + 5, but HC(C,,) > 2™ (Herbrand complexity may
be exponential relative to resolution proof complexity).

Proof sketch (a detailed proof can be found in [BL92]:
Define
Cn = {P(a),~P(z) V P(f(2)),~P(f* (a))}

(compare C,, to C in example 7.2) and refutations II,, as:

I, = =P@)VvP(f(z), -Ply)VvP(f(y), ~Pl)VvP(f*(z)),

~P(a) v P(f2 (2)), ~P(y)V P(F (4)), ~P() v P (2)),
~P()V P(f2"(2)), Pla), P(f*"(a)), ~P(f*"(a)), O

IL, are R-refutations and [(II,) = 2n + 5. The second part of the proof consists in
showing that HC(C,) > 2"; here one can prove that all ground instances —P(f*(a))V
P(f*1(a)) for k < 2™ — 1 of the second clause are required to get an unsatisfiable
set of ground clauses.
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Corollary 7.4 R-refutations may be exponentially shorter than ground R-refuta-
tions.

Theorem 7.3 provides us with information about all refutational methods in clause
logic which possess ground projections; such are Prawitz’s method, Bibel’s (original)
connection method and Chang’s V-resolution ([Pra69], [Bib82], [Cha72]). For all
these methods, having Herbrand complexity as a lower bound to proof complexity, a
consequence is that R-refutations may be exponentially shorter than representations
of refutations in those systems. Note that II, in the proof of theorem 7.3 is a
linear refutation. Because C, is a sequence of Horn sets there exist also linear
input refutations A,. but these A, (as they possess ground projections) must be
exponentially longer than II,,. The deeper reason is that linear resolution is capable
of lemmatization, while input resolution is not. The following theorem shows that
more than exponential speed-up w.r.t. Herbrand complexity is impossible.

Theorem 7.5 Let I' be a R-refutation of C. Then HC(C) < 2%,
Proof: Transform T' into a refutation A having a ground projection.

R.Statman has shown that Herbrand complexity may be nonelementary(!) w.r.t.
the length of a shortest refutation in a full logical calculus (e.g. natural deduction
or sequent calculus with cut). Because R-refutations maximally give an exponential
gain versus Herbrand complexity, the length of the shortest R-refutation may also
be nonelementarily greater than the length of a refutation in a full logical calculus.

Example 7.3 (Statman’s example)
Cp =STUIDU{=ab=a((T,b)b)}.

ab is an abbreviation for f(a,b), f € F'Sy and association to the left is assumed. ST
is a set of combinator equations and ID a set of equality axioms.

ST = {Szyz = (22)(y2), Bryz = x(yz), Cayz = (z2)y, Iz =z, pr = p(qz)}

S,B,C,I are constant symbols defining the corresponding well-known combinators,

the 5th clause in ST is an additional axiom. T}, in the definition of C, is a metathe-

oretical abbreviation for terms defined as Ty = T, Tyq1 = T}, T, T = (SB)((CB)I).
The set of equality axioms ID is defined as:

ID:{x::v,—'x:y\/y:x,—nx:yVﬂyz‘zV:c:z,-w:c:yVﬂuzzv\/:cu:yv}

Let s(0) = 1,s(n + 1) = 2°™ for all n; it is well known from recursion theory that
s is not an elementary function. For the set C,, above Statman proved [St79] that
HC(Cn) > 5(n)/2. From theorem 7.5 we conclude that the resolution complexity of
Cn > cs(n — 1) for some constant ¢ (independent of n).
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7.2 The Method of Function Introduction

The reason for the high complexity of resolution can be found in the weak means
to express and use lemmas in resolution proofs. From a proof theoretical point of
view it is the elimination of quantifiers and the (only) atomic cut rule of resolution
which prevents the expression of short proofs. This problem was attacked by E. Eder
[Ede92] by the introduction of two extension rules into the resolution calculus; by
these extension rules it is possible to introduce new predicate— and function symbols
which “encode” formulas built up by quantifiers and connectives. Eder’s method is
very strong and can be considered as a generalization of Tseitin’s extended resolution
for propositional logic. In a slightly different (i.e. more restrictive) way, new function
symbols are applied in [BL92] to represent shifting &f quantifiers within clause logic.
Although more restricted than Eder’s rules, the function introduction rule in [BL92]
leads to nonelementary “speed-up” of resolution proofs; the rest of this chapter
will be devoted to this function introduction rule. Introducing new symbols within
a resolution calculus is somehow against the philosophy of resolution where terms
must always be kept minimal. On the other hand, clinging to minimality prevents
formulation of substantial lemmata and thus the finding of short proofs. But we
must be careful to preserve the computational power of resolution and its relatively
small search space (otherwise we may take LK or natural deduction at once). In
this sense the function introduction rule, to be defined below, is computationally
adequate as it is directly related to the syntax of the clause where it is applied and
can be controlled by simple heuristics.

Example 7.4 (Baaz-Leitsch 1990)

Cn - {01,02,03,04,On} for

G = Pz, f(z),y)VQy, f(y),z),

Cy = ﬂP(u v,w1) V=P (v, z,ws) V P(u, z,w1),
Cs = —Q(u, U wl) =Q(v, z,w2) V Q(u, z,w1),
Cy = -P(a,f* (a),2),

Cs = —Q(a, f2 (@), 2).

Every R-refutation of C,, is of exponential length (in n). Investigating the form of
the R-refutations, we find that all resolutions performed on the P-literal in O are
stored in the -literal and vice versa. Giving preference to resolutions with the
P-literals we get very (exponentially) long queues of Q-literals and vice versa (C,, is
completely symmetric). This effect can be avoided by splitting the clause Ci; note
that an ordinary split of C, via Cj is impossible because C; does not decompose
into variable-disjoint subclauses. We need stronger means, in fact quantificational
rules, to enforce a decomposition of Cj.

For this purpose consider C; as quantificational formula

(vVz)(Vy)(P(z, f(z),y) V Q(y, f (1), ).
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By the valid schema

(vVz)(Yy)(A(z,y) vV B(z,y)) — (Vz)(3y) Az, y) V (32)(Vy) B(z, y),

which can be derived by shifting quantifiers, we obtain the formula

F: (V) (Fy) Ple, f(z),y) v CBr)(Vy)Q(y, £ (y), 2).

By skolemizing F' we obtain the clause

C= {P(m,f(m),g(a:)),@(y,f(y),c)}

which is decomposed. C is not R-derivable from C,, because it contains new function-
and constant symbols.

But Cn ~sat Cn U {O}

By using C instead of C; we obtain a refutation of C, having linear length (in
n); because C is decomposed we may split C,, into C,, U {L1} and C, U {Lz} for
C = L1V Ly and treat both set of clauses in parallel.

There are many variants of function introduction, depending on the (quantifier shift-
ing) theorem applied to a specific clause. For theoretical purposes we may restrict
quantificational inference to the innermost quantifier: ‘

Definition 7.2 Let C be a set of clauses and C € C. Suppose that
A= (VT)(Vy)(F1 V Fy)

is a PL-form of C subjected to a minimization of the range of the V-quantifiers
(Fy, F> may contain quantifiers). Then the (skolemized) clause form of

F(C) A (VD) ((Qu)F1 V (Q%) Fy) for @ € {V¥,3}
is called 1 — F'—extension of C.

Remark: If C decomposes then A = F| V Fy and 1 — F—extension is not applicable.
1— F'—extension is not a rule which applies to a clause only, but is global in the sense
that newly introduced function symbols may not appear in C. The rule would be
incorrect if only the formula (VZ)((Qy)Fy V (Q%y)F,) is skolemized without respect
to the whole set of clauses.

By shifting k& quantifiers at once we get k — F—extensions and by shifting quan-
tifiers till the form becomes a disjunction we obtain SF—(splitting F'—) exten-
sions [BL92]. In example 7.4 a splitting F-extension was applied. The concepts
of k — F—extensions and 1 — F'—extensions are independent in the sense that gen-
erally it is impossible to derive a k — F'—extension by iterating 1 — F'—extensions.
Suppose that @ in definition 7.2 is V; then the extension is of the form

Cu {01 \% Cz{y — flzq,.. ,:Bk)}}
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For ) = 3 we obtain

CU{Ci{y «— f(z1,...,z)} V Ca}.

While y € V(C1) N V(Cy) (by minimization of the quantifiers), y ¢ V(C;) N
V(Co{y « f(z1,...,2)}). We see that 1 — F—extension is some kind of variable
decomposition step within a clause.

Because 1 — F'—extensions change the term universe we cannot expect to preserve
strong correctness (the models remain the same during inference). But we know that

C ~sat C U {C}

if C is obtained by 1 — F'—extension, what guarantees refutational correctness. Note
that, whenever skolemization is applied (e.g. in transforming a formula to clause
form), we must be content with refutational correctness. Although ['—extensions
model simple quantificational rules only, their effect can be very strong:

Theorem 7.6 There exists a sequence of clauses Cp, = C U {{=P,}} (the P; are
atoms) s.t. it holds:

1) U(IT) > cs(n — 1) for all R-refutations I1 of C,,
(for some constant ¢ and s(0) =1, s(n+ 1) = 25(™).

2) If 1 — F—extensions are admitted then, for every n, there exists R-refutations
Ny st (D) <290,

Idea of Proof: (exact proof in [BL92])

Take a modified version of Statman’s example (example 7.3), formulate a short
refutation in a calculus with (unrestricted) cut rule and derive the skolemized cut
formulas via 1 — F-extension in some appropriate coding. The expense is “only”
exponential.

Theorem 7.6 show that function introduction can lead to a nonelementary speed-
up w.r.t. ordinary resolution. The question remains whether function introduction
can be of real computational value. Answers can already be given for function intro-
duction rules applied as splitting- and as strong factorization technique. The effect
of clause splitting by function introduction was carefully investigated in [Egl90],
where some remarkable speed-up was obtained for some classical theorem proving
examples.

Function introduction is rather a principle than just a rule, as it may be in-
finitely varied and can adapted to different purposes. In [Egl91], [Egl92] function
introduction was used as strong factorization rule leading to considerably shorter
proofs.

Example 7.5 (Egly 1992)
Let C,, = {Cy,C5,C%} for n > 0 a sequence of clause sets s.t.

Ci = P(z, f(z,y),h(z,y)V Py, f(y,2),9(z,y))
Cy = =P(u,v,w1)V-P(v,z,we)V P(u,z,w1)
03 = "‘P(CL, f(*: *)2"7 Z)
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f(x, %)™ is defined as:

F(x, )t = fl(a,a)
= f

f(*, *)m-l—l

for m > 0.

Every R-refutation of C, has a length > 2" (the reason is similar to that of
example 7.4). However we can get much shorter proofs by manipulating the clause
C1 (as quantified formula). For this purpose represent C as

A= (Vo) (YY) (P, f(z,y), Mz, y)) V Ply, f(y,z), 9(z,y)))

Now we “unify” the third places of the atoms by introducing an existential quantifier
via the valid formula:

A — (V2)(Vy) B2)(P(z, f (2,y), 2) V P(y, f(y, ), 2))

By adding the right hand side of the formula to C, and by skolemizing we obtain

P(xaf(x:y)ar($7y)> v P(y,f(y,x),r(:c,y)).

But this clause, contrary to Cy, can be factorized to P(z, f(z,z),r(z,2)). Adding
this last clause to C,, a refutation of linear length (in n) can be obtained.

Function introduction can be considered as a computational tool to apply quantifi-
cational rules in clause logic, where quantifiers don’t belong to the syntax. Although
some more investigations are required for an efficient application of such rules within
resolution deductions, a starting point for “macro”- inference in clause logic is given.
Function introduction is a purely predicate logic principle and is of no significance
to propositional logic (it simply does not exist there). While many methods to
improve inference owe their existence to prototypes in propositional logic, function
introduction is of genuine quantificational nature; it is weaker than Hilbert’s e- for-
malism [HB34], where quantifiers are coded by terms under preservation of logical
equivalence, but is intuitively related. Its specific characteristic is the skolemization
principle as inference rule (similar to one of the extension rules in [Ede92]) instead
of a preprocessing only.
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