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NON STANDARD REGULAR FINITE SET THEORY

STEFANO BARATELLA AND RUGGERO FERRO

Abstract. We propose a set theory, called NRFST, in which the cantorian axiom
of infinity is negated, and a new notion of infinity is introduced via non standard
methods, i.e. via adequate notions of standard and internal, two unary predicates
added to the language of ZF. After some initial results on NRFST, we investigate
its relative consistency with respect to ZF and Kawai’s WNST.
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INTRODUCTION

As we have stated in our previous paper [BF93], our goal is to introduce a set theory
negating the cantorian axiom of infinity, but, at the same time, still able to support
modern mathematics. A hint that this is possible comes from

e the results that mathematics reached even before the end of the past century
with the use of infinitesimals and without the cantorian axiom of infinity;

e the possibility of exhibiting good foundations for the infinitesimal calculus via
Robinson’s non standard analysis (even though non standard analysis accepts
the cantorian axiom of infinity);

o the hope of being able to introduce a non standard set theory including the
negation of the axiom of infinity relativized to the standard and internal ele-
ments: such a hope is based on the impossibility of characterizing the notion of
finiteness (and hence of infinity) in a first order language.

Lying underneath this entire approach there is a notion of infinity, different from the
cantorian one, whose heuristic motivations will be discussed in detail in the appendix
at the end of the paper.

We will admit the existence of natural numbers of which we do not recall the entire
process of construction. These numbers may be regarded as infinite. So we get another
notion of infinity that takes into account the role of the observer: he regards a set as
infinite if he is not able to recall its entire construction.

In the set theory that we propose there is, in addition to the usual membership
predicate, an undefined unary predicate, standard, that will be denoted by st and
whose intended interpretation is that it holds on the elements that are finite. All the
elements of the observed world form the internal universe and, among them, those that
are too large to be grasped by the observer will be called non standard.

We will assume that the observer has a vague notion of the non standard elements
of the observed world, and, from the point of view of the set theory that we propose,
we want to be able to consider these vague notions as well. Thus we need a further
undefined unary predicate, internal, denoted by in, that will distinguish between the
objects of the observed world and the extensions of vague notions associated to them.

We will call external all the objects that we will deal with, whether they are obtained
from the observed world or from a vague perception of the observed world or by an
operation on external sets previously obtained. :

To state something about the observed world we will use formulas relativized to
the internal elements, i.e. formulas of the language of ZF in which we substitute
“Ya in(x) —" and “Ja in(x)A” for “Va” and “Jz”, respectively. If ¢ is a formula
in the language of ZF, we will denote by ’¢ the relativization of ¢ to the internal
elements.

Similarly, %¢ (¥¢) will denote the relativization of ¢ to the standard (external)
elements.

We will denote by NRFST (Non standard Regular Finite Set Theory) the the-
ory whose axioms state the main features of the concepts of standard, internal and
membership. ,

We accept that the definable properties of the internal universe retain their truth
value when relativized to the standard universe. This assumption is formalized as fol-

NON STANDARD REGULAR TINITE SET THEORY 3

lows:

if ¢ 1s a formula in the language of ZF whose {ree variables are among

Z1,.... &y, then the following sentence is an axiom of our theory:

(Transfer)

Va Vo, .. Vaa((st(a) Ast(za) A Ast(a,)) = (P¢ « 16)).
This axiom schema will be called the Transfer Principle.
Furthermore, since we want the observed world to be a universe of sets in which the

negation of the cantorian axiom of infinity holds, we describe the membership relation
via the axioms of the theory RFST introduced in [BF93]. We recall that the axioms of

REST are the usual axioms of extensionality, pair, union, replacement, emptyset and
the following axioms of finiteness and strong regularity:

(Fin) Va Find(2)
where Fin/(x) is the formula
AfAn(Lun(f) A Nat(n) A Ing(f) A Dom(f) = n A Ran(f) = z),

Fun(f) and Nat(n) are the formulas asserting that [ is a function and n is a natural
number, respectively.
(SReg) Yada(On(a) Ae C R(a))
where the hierarchy of E{«)’s is the usual one. Notice that the formulation of SReg
1s legitimate since, as proved in [BF93], Pow (the Power Set Axiom) follows from the
axioms listed before SReg.

Now we are ready to state the axioms of NRFST concerning the membership rela-
tion.

The axioms of RFST are assumed to hold among the internal sets and can be
relativized to the standard universe, in view of the transfer principle.

Thus the following will be an axiom schema for NRFST:

(*RFST) 5¢  for each axiom ¢ of RFST

Since the elements of the the observed world are viewed as collections, we add the
following transitivity of the collection of internal sets axiom:
(Intrans) YaVy((e € y A in(y)) — in(z))

We require the intersection of a standard set with any set, even with a non internal
one, to be a standard set. This attitude is formalized by introducing in NRFST the
following axiom of standardization:

(Stan) VaVylst(y) — Fz((si(z) AVu(u € z & (v € x Au € y))]

In the usual non standard set theory (see [Kaw83]) the name “axiom of standardization”
is reserved for the following statement:

(UStan)
Ya(Jy(st(y) AVz((z € 2Ast(z)) — z € y))
— dz(st(z) AVulst(u) = (v € z & u € 2))))
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Nevertheless we stick to our terminology because the two formalizations can be proved
equivalent using the other axioms that will be introduced in NRFST in the sequel.
The axioms introduced so far do not imply the existence of either non standard
internal elements or non internal elements. To ensure the existence of such elements, as
it is customary in nonstandard theories, we assume the Axiom Schema of Enlargement:

Let é(x,y,y1, ..., yx) be a formula in the language of ZF whose free vari-
ables are among those displayed (where yy, ..., yx are standard parame-
ters). Then the following statement is an axiom of NRFST.

(Enl)
Yyy . Vya[(st(yr) Ao A st{yn))

— [Vz(st(z) =y (st(y) AVa(z € z — “p(z,y, 91, - yx))))]
— Jylin(y) AVa(st(z) — Té(z, 5,91, ., y2))]]

This formulation of Enl is limited to relations acting among standard elements and
definable through a ZF formula relativized to the standard universe. We will overcome
these restrictions when strengthening NRFST in Section 3.

Regarding the external elements, we require them to have the basic features of the
notion of set, so we include in NRFST the axioms Ext, Pair and Union without any
relativization.

For the moment, we propose to accept in NRFST the Power Set Axiom (Pow), the
Axiom of Choice:

(AC)
Vady(Fun(y) A Dom(y) = @ A Ran(y) = Uz AVz((z Ea Az #£0) — f(2) € 2))

and the Axiom Schema of Separation:
(Sep) Yy, o VudzVy(y € z o (y € u N d(y1y ooy Uy y)))

for any formula ¢(y1, ...,y y) in the language of NRFST whose free variables are
among those displayed.

In Section 3, we will consider a strengthening of NRFST obtained by replacing Sep
with the schema of replacement for external sets and the axiom of enlargement with
the axiom schema of saturation.

- The study of the consequences of possible restrictions on the use of the predicates
st and in in the axioms for the external universe, as well as a deeper investigation
of which properties have to hold in such a universe, are goals that will be pursued in
future researches.

In the sequel we will use ideas from [Kaw83] and compare NRFST with the theories
WNST and NSTintroduced by Kawai in [Kaw83]. In Kawai’s formulation, the symbols
S and I are two constant symbols of the language whose intended interpretations are
the collections of standard and internal sets respectively. With respect to the notation
introduced so far, we could say that

S = {z:st(a)}, I={a:in(x)}, v € Siff st(zx), z € Iiff in(a)

We prefer to have the predicates st and in in the language rather then the constants
S and I, because we do not want to assume a priori that the collections of the standard
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sets and of the internal sets be themselves sets; but in what follows we will use either
notation when this will cause no problem.

We will stick to Kawai’s notation: lower-case variables in a formula are intended to
range on standard sets, upper-case variables on external sets, and boldface variables
on internal sets. We will speak of standard, internal, external variables when referring
to the tree kinds of variables mentioned above.

If ¢ is any formula in the language of ZF, *¢ ('¢, ¢ respectively) is the formula
obtained by replacing all bound variables of ¢ by standard (internal, external) variables.
The free variables of ¢ are intended to be replaced by external variables in all $¢, 1,
E . if not otherwise specified.

Remark that the Weak Extension Principle (WEP) and the Axiom of Infinity for
external sets are consequences of the axioms of NRFST.

Notice also that (even in Kawai’s WINST) it is not necessary to assume that every
standard set is internal. For, an application of the Transfer Principle yields

Va(Jy(z € y) < Jy(z € y))

as a theorem in both WINST and NRFST. Since every standard set is member of
some standard set, the consequence that every standard set is internal follows from the
transitivity of the collection of internal sets.

The differences between the Axiom Schema of Enlarging in [Kaw83] and Enl are due
to the presence of the axiom “Fin in NRFST.

1. Basic DEVELOPMENT OF NRFST

We start by remarking that any subset of an internal (standard) set defined by a
ZF-formula possibly with internal (standard) parameters is internal (standard).

Notice also that the notion of empty set is absolute.

In RFST the property of being a natural number can be expresses by means of a
formula Nat(z) (see [BF93]), thus in NRFST one can consider X-natural numbers,
where X can be S, I or £. X-natural numbers are defined by the formula * Nat(z).
Notice that

NRFST I Va(*Nat(z) « 'Nat(z)),

as a consequence of Transfer Principle.

Also, the F-natural numbers are well-ordered by the membership relation and there-
fore, for any formula ¢(z) in the language of NRFST (possibly with parameters), we
have

NRFST F ¢(0) AVN(ENat(N) A ¢(N) — ¢(N U{N}))
— VYN(ENat(N) — ¢(N)).

We will refer to the above as to the Principle of Induction on External Natural
Numbers.

Proposition 1.1. NRFST E VX(PNat(X) & “Nat(X) A st(X)).

Proof. (—) By induction on the external well-ordering of E-natural numbers.
(<) Let n be a standard element such that SNat(n) A (=¥ Nat(n)). Let

K ={X <n: st{X)A(-FNat(X))}.
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It is not difficult to prove that K is well-defined, nonempty and that it is indeed a
standard set. The existence of a least element in i leads to a contradiction. [J

The above result, combined with Transfer and Intrans yields the following:
Proposition 1.2. NRFST Ve B(Fin/(2)).
As a consequence of the previous proposition, we have that
NRFST F Ve *Finf(z),  with X = 8,1, E.

50, in the sequel, we will feel free to omit the relativization on the formula Fi?lf(X),
when the variable X is instantiated on a standard argument.

As another application of the principle of external natural numbers, we notice that
every standard finite external set of internal elements is indeed internal. In a sense this
is the internal analogue of the axiom of standardisation.

The next theorem (proved by external induction) shows that every F-finite set is
standard i all its elements are standard.

Theorem 1.3.
NRFST F VX(PFin/(X) — (st(X) = VY (Y € X - st(Y)))).
The transitivity of the collection of standard sets now follows immediately:
Corollary 1.4. NRFST F VX(si(X) = VY (Y € X — st(Y))).
Remark 1.1. Let ¢(v,w) be the formula Vz(z € v — z € w). For X = S, I, F, we
abbreviate Yo(V, W) by V' ¥ C W. Then
NRFSTF VaVy(a®C y = 2/ C y wa P C y),
by Transfer and by transitivity of the collection of internal sets.

I v and y are standard variables, we can thus write @ C y without fear of ambiguity.

Now we show that NRFST proves the existence of an internal (and hence I-finite)
set that contains all the standard sets.

Proposition 1.5. NRFST F IxVy(y € x).
Proof. Apply the Axiom Schema of Enlarging to the formula é(z,y) == € y. [

Thus NRFST proves that the collection of standard sets is a set: apply separation
by means of the formula si(z) to an internal set containing all the standard sets. It
follows that NRFS'T is powerful enough to prove the existence of non-standard internal
I-natural numbers and the existence of external non-internal sets.

Theorem 1.6. NRFST I Ix(/Nat(x) A (—st(x))).

Proof. Let b be an internal set that includes all the standard sets (see the previous
Proposition). By Separation on internal sets we define ¢ = {x €b: Nat(x)}. The set
¢ contains all the standard sets = such that Nat(2).

It is easy to prove that d = Uc satisfies 1On(x). Moreover, since d is I-finite, it
satisfies also 'Nat(x). Eventually, d is not a standard set. For, if it were not, the
Axiom of Strong Regularity relativized to the standard sets would be contradicted. [J
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So, from the proof of Theorem 1.6, we have that, in NREFST, every internal set
satisfying 'On(x) satisfies also ' Nat(x).

We have already remarked that the collection of standard sets is a set. Let us call
such a set S. It is easy to show that NRFST F - in(8). We point out that, as
expected, the standard sets satisfying  Nat(x) form an initial segment of the inFernai
sets satisfying { Nat(x) with respect to the order given by the membership 1‘elait;1on.

We prove now that the axioms ”Inf and W EP of the theory WNST (see [Kaw83])
are theorems of NREFST.

Theorem 1.7. NRFST - £lnf.
Proof. Apply separation for external sets to an internal set containing all the standard
sets with respect to the formula PNat(X). O
Theorem 1.8. NRFSTF WEP.
Proof. First of all, by transitivity of the collection of standard sets, we can reformulate
Kawai’s WEP as [ollows:

VaVyVI (I 2 — y (map)) |

— I (f: 2 — y (map)) AVz € z(F(z) =1(2))))

The proof is by induction on the external natural numbers applied to the formula

d(N) so defined:
VaVyVF((F ;o —> y (map)) A ("a is bijective with N) —
Jg((g: v — y (map)) A (Vz € x(F(2) = g(2)))).
O
Remark 1.2. Stan and UStan are provably equivalent in
NRFST™ = NRFST \ {Stan}.
For clarity we rewrite Stan and UStan using the convention on variables:

(Stan) VXVydVU(U €z U e X AU €y).
(UStan) VX (Fy(°X Cy) — FzVa(z € X &z € 2)),

where for every external set X, we let °X = X N S. ,

In order to prove that NRFST™ F Stan — UStan, let X be such that there exists
a standard y with °X C y. By Stan applied to X and y there is a standard set z such
that, for all U/, U € z iff U € XNy. A fortiori the iff holds for the U’s that are standard
and the conclusion follows.

In order to prove that NRFST™ F UStan — Stan, we notice first that the state-
ments 1.1 - 1.3 and Corollary 1.4 hold by replacing NRFST with NRFST~ + UStan
in the assumptions. '

The key point is to show (+) of Proposition 1.1 under the new assumptions (thcf,
rest is immediate). One can follow the proof of Proposition 1.1 until the remark that A
has only standard elements. Then one can app y UStan to K (recall that K € nU{n})
so getting a (nonempty) standard set "/ The existence of a least element among the
standard members of *& leads to a contradiction.
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Now, in order to show that NRFST~ + UStan — Stan, choose X and y and
consider Z = X Ny. By UStan there is a standard z such that, for all standard x,
¢ € Z iz € z and, by the corresponding of Corollary 1.4 proved for NRFST™+
UStan, U € z iff U € X and U € y, for all U.

2. RELATIVE CONSISTENCY OF NRFST WITH RESPECT TO WNST

In this section we prove that NRFST is consistent relative to Kawai’'s WINST.

Without further notice we will stick to Kawai’s convention on the use of variables.

What we will show is indeed that the theory NRFST* obtained by reformulating
NRFST in the language of Kawai with the constant symbols S and T (so assuming that
the collections of standard and internal sets are themselves sets) is consistent relative
to WNST. Clearly, that implies the consistency of NRFST with respect to WINST.

In [Kaw83], the author provides a model for WINST, under the assumption of con-
sistency of ZFC. The model is obtained as a direct limit of a sequence of enlargements
beginning from a Zermelo universe.

Incidentally, notice that Kawai’s construction performed in his Lemma 2 ([Kaw83])
not always leads to a structure that is a model of the axiom of infinity, in contrast to
what stated by the author. For, let us define inductively Ry = 0 and Ry = P(R;)
(power set). Let Miy; be [Riyy, €i41], where €41 is € restricted to Riyq. 1t is easy
to verify that if we apply repeatedly the Proposition preceding Lemma 2 in [Kaw83]
starting from M, we get the chain of structures

b

(Mg, tipr 2 Rigy — Rigo)icws

where ;44 is the inclusion map for all 7 € w.
The direct limit of the chain (Myy1, tiz1 : Riy1 — Riys)iew is the structure

[Rw E} = {U R;, U Ei]a
1€wW 1€Ew
that clearly does not satisfy the axiom of infinity. In the sequel we show how to modify
a given model V = (V,€,5,1) of WNST in order to get a model of NRFST*. We
commit the abuse of using the symbol “€” for the membership relation in V since from
now on V will be our universe of discourse. We let

I"={xel: Vy(ye(Trcd(x)U{x}) =" (Finl(y)))} and & =SnTI"

Notice that the definitions of /* and S* are legitimate by the Separation Schema for
external sets of WINST.

Remark 2.1. By the Transfer Principle of WINST, it holds also that

S ={v e S: Vy(ye (Trel(z) U {a}) =% (Finl(y)))}.

If ¢ is a formula in the language of ZF, we shall use the abbreviations (Vz € 5*)¢
and (Jx € 5*)¢ for Va(Vy(y € (T'rel(x) U {a}) =5 (Finf(y)) — ¢) and for Jz(Vy(y €
Trel(z)U{a} =5 (Fin(y))) A ¢), respectively.

The abbreviations (Vx € [*)¢ and (3x € [*)¢ are introduced in a similar way.

Given ¢ as above, we shall denote by *" ¢ ("" ) the formula obtained by relativizing
all the quantifications in ¢ to S* (1*).

Before proving that V* = (V, €, 5%, I*) b NRFST™, we need a preliminary result.
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Lemma 2.1. For every formula ¢(vy,...,v,) in the language of ZF whose free vari-

ables are amonyg those displayed and for all ay, ..., a, € S*, the following are equivalent:
(i) Vi Sar,. .. a,);
(ii) VE T¢arn. .., a);
(iii) VE "¢lar,... a.);
(iv) V' f9(ar, ... a).

Proof. Let us show that (i) < (ii), proceeding by induction on the complexity of ¢.
The only nontrivial case is when ¢ has the form Jvgy (v, vy, ..., v,):

V' Ylay,. .., a,) &
< there exists ag € S™ such that V™ |= S'z,!)(ao, A1yevy Qn)
<« (by ind. hyp.) there exists ag € S™ such that V = % 9(aq, ay, . .., a,)
&V E (Ju € 8) Thlag, ar,....an) & VE Tdlay, ... an)
The proof of (iii) < (iv) goes in the same way. [J

Eventually, the equivalence of (i1) and (iii) is a consequence of the Transfer Principle

of WNST.
Corollary 2.2. Transfer holds in V*.
Lemma 2.3. Intrans holds in V*, i.e. V' | VXVy(X ey —» X €1).
Proof. Straightforward. [
The next Lemma shows that S* is transitive in V*.

Lemma 2.4. V' = VaVy(y€ =z —y€8S).
Proof. Recall that (see [Kaw83])

WNST F Va(5(Find(2)) & Z(Finf(z))

and  WNST FVA(E(Fin/(A)) - (A€ S « ACS)).

Thus

VE VaVy(zeS" Ayex — yeS),
from which the conclusion follows. [

Lemma 2.5. Enl holds in V*.

Proof. Let ¢(u,v) be a formula in the language of ZF (possibly with parameters) such
that

(1) V™ E YodoVu € w S¢(u,v).

Then (by (i) & (ii) of Lemma 2.1) we have
VEVwe S v e SVue (wn S7) % ¢(u,v), le.
VEVwe S"FoVuewv € S"A(ue S — “¢(u,v))).



10 STEFANO BARATELLA AND RUGGERO FERRO

Let *"4p(u,v) be v € S*A (v € S* — 5 ¢(u,v)). We claim that

(2) V E Vo(*(Find (w) = FoVu € w 5 p(u,v)).
Assume not. Then V | Jw(¥(Fin/(w)) A YoIu € w(=%"p(u,v)), i.e.
VI Jw®(Finf (w)) A YoJu e w(=(v € S*) V (u€ S A =5 ¢lu,v))).

So V = Juw(3(Find(w)) A Yo € §*3u € (wn S*)—ws B(u,v)).

Let b € V be a witness for the above formula and let ¢ = bN S*. Since b € S, the
characterization of S* given in Remark 2.1 allows us to infer that C' € S since C' is
obtained with an application of the Axiom Schema of Separation for standard set of
WNST. Also, C' € S* by definition and because it can be easily proved in WNST
that a standard subset of a finite standard set is finite. Therefore

Vi Jwe SVoe S Fue (wn S*)(=% ¢(u,v))
and hence V™ | JuwVoIu € w =7 ¢(u,v),

so contradicting (1).
Thus (2) holds and, by the Schema of Enlarging of WNST, we get

Vi IvWu I‘z/)(u,v).
So
Vi WuvelI"Awe I" = "g(u,v)))
and hence V | 3v e I'Vue 5 Ig(u,v)
and, finally, V™ 3vVu '¢(u,v),
as requested. O
Lemma 2.6. The aviom of standardisation Stan holds in V*.

Proof. We show that UStan holds in V*. This, together with all the other axioms,
shows that Stan holds in V* by Remark 1.2.

Let A be an external set such that V* = J2(°A C 2). Therefore there exists a € S*
such that

(3) VE ANS* Ca.

AN S™ is obtained by Separation on external sets. By (3), we can apply the Axiom
of Standardisation (that holds in V) to AN .S*, so getting b € S such that

Vi Ve(zeboae (AN ST)).

Let c=anb. Clearly c€ S*and V |= Vo € S*(z € c = 2 € A).
Hence V |z 3y € S*Va € S*(z € y & « € A) and the required result follows by
applying (i) & (ii) of Lemma 2.1. [J

Lemma 2.7. All the axioms for the external sets hold in V*.

Proof. The axioms for the external sets hold in V and do not contain occurrences of
the constant symbols S and I. Hence, by definition of V*, they are true also in V*. [

Gty e}
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Let us show now that all the axioms of RF ST hold in V*. This is easily seen for
SEmptyset, ¥ Pair, Ext, S Union.
Lemma 2.8. V* = “Repl.

Proof. We want to show that, for every formula ¢(yi,...,yx,2,y) in the language of
ZF whose free variables are among those displayed,

V™= Yy, uVu(Ve € udly %6(a,y) — J2Vy(y € 2 Jz € ué(z,y))).

For a sake of clarity, let us forget about the parameters yy, ...,y and let a € S* be
such that V* = Va € a3ly “¢(x,y).
Hence, by (i) < (ii) of Lemma 2.1, we have

(4) VE VeeS(zea—Iylye S AT d(z,y)).
By Lemma 2.4, (4) is equivalent to
(4" Vi Vo eadlylye 5" A~ o(z,y)).

We are now in a position to apply 9 Repl (that holds in V) to get
(5) Vi 3Vy(yezo Jaealy € A ¢(z,y))).
Let b € S be such that V = Vy(y € b & 3z € a(y € S* A 5" ¢(x,y))). From the

ﬁmtenees of @ and from (4°), one can easily prove that V = S(Fin/(b)).
Hence, by (5), b € S and, again by (5),

Vi Vye S (yebe Jue(ansS) T ¢z, y)).

SoVEIeSVyeS(yebe Jx e (ansS*) S é(z
result follows by applying (1) & (2) of Lemma 2.1. O

Lemma 2.9. V* = Vo 5(Finf(2)).

Proof. First of all notice that V = Va ¥(Fin/(2)). Thus, by induction on the standard
natural number giving the finiteness of a € S, we can prove that

Vi 3f € S Ime S™(% Fun(f) A ¥ Nat(m) A5 ("f is a bijection of m onto a”)).

Therefore V |= Va € S* 5" (Finf(2)), from which the conclusion follows by applying
(1) & (2) of Lemma 2.1. O

,¥)), from which the required

Before proving that V* = 9SReg(x), we need some preliminary results.
Lemma 2.10. V |= Vn(SNat(n) « (n € S*) A 5" Nat(n))

Proof. The left-to-right implication can be proved by induction on standard natural
numbers. The base step is trivial. For the inductive step,

VE neS)A°Nat(nU{n}) = VE SNai(n)
= (by ind. hyp.)V = (n € S*) A % Nat(n)
= VE (nU{n}eS)A T Nat(nU{n}).

For the other implication. let n € S* be such that V | 5" Nat(n) A =5 Nat(n).
In 'V consider m = (nU{n})N{x € S*: % Nat(x) A= Nat(z)}. The set m is in S*
and is nonempty. The existence of a least S*—element in m leads to a contradiction. [J
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Notice that since RFST \ {SReg} - Pow (see [BF93]), as a consequence of the
axioms so far proved to hold in V*, we have V* = “Pow. Hence we can define in V*
the hierarchy of R(«)’s and prove the required result:

Lemma 2.11. V* | “SReg.
Proof. We shall prove that
(6) V™ = Vedy(°Nat(y) Az C R(y)), ie.
V E Vze §* 3y e S(° Nat(y) Az € 5 R(y)).
Now, induction on standard natural numbers yields that
V = Va(*Nat(z) — R(z) =% R(z)),
hence, by Lemuna 2.10, (5) is equivalent to
(7) V= Vo e S y(*Nat(y) Az C R(y)).
Since V = SSReg, (7) can be proved by induction on rank. [

3. STRENGTHENING NRFST

We will strengthen NRFST by replacing the axiom schema Enl with a stronger form
(denoted by Sat) and by introducing the axiom schema of Replacement for external
sets (ERepl).

We have proved in Section 1 that, under the axioms of NRFST, the collection
of standard sets is indeed an external set. The following definition is customary to
strengthen Enl (see [Kaw83]):

Definition 3.1. (NRFST) A set A is S-size (notation: Ss(A)) if there exists a sur-
jective (external) function from S onto A.

We can now state the axiom schema of Saturation: let ¢(x,y, z1,. .., z,) be a formula
of ZF whose free variables are among those displayed. Then

(Sat)
VXV, . % [[Ss(X) A Vx(PFin/(x) A x C X — Juvv € x To(v,u,xy,. .., %,))]

— AwYv e X 1p(v,w,x1,...,%)].

Here X is not bound to be included in the internal universe because this restriction
would not alter the strength of Sat.

It is clear that Sat is stronger than the axiom Enl introduced in Section 2 for S is
clearly S-size. However, we have to keep both Enl and Sat since the notion of S-size
does make sense thanks to Enl.

We will call NRFST* the theory obtained by adding to NRFST the axioms ERepl
and Sat.

We claim that NRFST* is consistent relative to ZFC. Indeed, what we will prove
is that NRFST™ is consistent relative to Kawai’s NST. Since NST is a conservative
extension of ZFC (see {Kaw83]), the proof of the claim then follows.

We argue as in Section 2, after formulating NRFST* in the language of Kawai with
the constant symbols S and I. Under the assumption of consistency of ZFC, there exists
a model W = (W, €,5,1) of NST. Again, we use “€” for the membership relation in
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W because W will be our universe of discourse. We define W* = (W, e, 57, I*), where
the definitions of 5* and I~ are those given in Section 2 relative to W. A straightforward
check shows that all the results of Section 2, but Lemma 2.5, hold relative to W and
W Also, W* |= ERepl, because ERepl holds in W. So, we are left with the proof of
the following:

Lemma 3.1. Sat holds in W*.

Proof. Let ¢(z,y,z1,...,2,) be a formula of ZF whose free variables are among those
displayed and let A in W and by,...,b, in I* be such that

W = Ss(A) AVx[PFinf(x) A x € A— Juvv e x 1¢(v,u,by,..., b))

In the sequel, we will omit the parameters by,...,b,. Notice that W* = Ss(A)
implies W = Ss(A). Also, we have

W Vxe I'[PFPinf(x) A xCA-Tuvvex(ue I" A (ve T — "p(v,u)).
Let (v ,u) be u € I" A (v € I" — " ¢(v, u)). We claim that
(8) W Vx[PFin/(x) A x C A— Juvv e x (v, u)].

Assume not. Then

WE W["Fin/(x) A xCA A Vudvex(m(ue I V(vel A =Fg(v,u))l.

Therefore W |= 3x[*Fin/(x) A x CA A Yu€ I*Iv € x N "= ¢(v, u)]. Let ¢ be
a witness for the formula in square brackets. Since

NST F Vx(PFin!(x) — 1 Fin!(x)),
we have that W = "Fin/(c). Let d = ¢ N I*. Then d € I* and so
Wk 3xeI"["Fin/(x) A xCA A Yue I*Iv e x-"¢(v,u)].

Therefore W™ |= 3x[" Fin/(x) A x € AA-3uV¥v € x '¢(v,u)]: a contradiction.
Thus, by the Axiom of Saturation of NST, we get from 8 that

W E IvWue A y(v,u)
and, by definition of ""¢(v,u), W* = 3vVu € 4 1¢(v, u), as requested. .[J
Theorem 3.2. NRFST" is equiconsistent with ZFC.

Proof. The previous Lemma and the discussion preceding it show that NRFST* is
consistent relative to ZFC. For the converse, assume that NRFST* is consistent.
Then ZFC~ is consistent (among the external axioms of NRFST* there are those of
ZFC™) and, as is well known, the consistency of ZFC thus follows. [

One might ask whether it is possible to further enlarge NRFST* in order to include
the axiom of restricted regularity and at the same time retaining the relative consistency
with respect to ZFC. We show that it is not possible to proceed as done before.

Under the assumption of consistency of ZFC, let W = (W, E, S, I) be a model of
NST. If we are looking for a model obtained from W in which the axiom of restricted
regularity holds, then it is natural to drop from W all the elements not satisfying the
restricted regularity (for instance the external set of W that is the collection of all
internal non standard natural numbers). Moreover, since we want the negation of the
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axiom of infinity to hold in the internal universe, then we are forced to define S” and
7* as it was done in Section 2, whilst the definition of the universe of the new model
requires now some preliminary work. We let

IF={xel: Wk Vy(ye (Trel(x)U{x}) =" (Fin/(y)))} and S"=5nT".

~ From the point of view of ZFC, F is a set, so it does make sense to consider (in
Z'FC) the transitive closure £ of E. For X in W, let

Telg(X) = {y € W: thereexists x € X such that (y,z) € F}.

‘We define
W= {X eW: VY € Telp(X)U{X}
WE Y£0)AYNI"=0)—3ZeY(ZNnY =0)}.

Our candidate is now W* = (W* F, 5% I*), where we denote in the same way
the relation £ on W and its restriction to W=*. W™= satisfies the axiom of restricted
regularity (IN8) by construction. Notice that / € W= and also that I* C W~ as a
consequence of the well-foundedness of I.

Unfortunately, ERepl (the axiom of replacement for external sets) does not hold in
W™, as we are going to prove now.

Let «, 3,7 be ranging over the internal ordinals of W. Since W is a model of NST,
we have

(9) W | YavVpalyaf: (ax {0} U B x {1},R) (v, E),

where R is the lexicographic order on the pairs of @ x {0} U 3 x {1} and 7 plays the
role of the ordinal o + 3 in W.

Let w € W be the standard set containing the natural numbers and let A = w\ §
(read everything inside W). We have that A € W~ since Tclp(A) = w and since
W =(ANT*=0).

Consider now the formula On(X) stating that X is in / and that it satisfies the
definition of ordinal relativized to I. Such a formula containing the parameter I can
be interpreted in W* since, as we have already noticed, I € W*. So On(X) allows us
to recover inside W the internal ordinals of W that are merely external sets in W~
(i.e. the internal infinite ordinals of W). We claim that

W* = VN € AIC(On(C)AIF : (wx {0} UN x {1},R) -2:(C, E)).

The existence of such a C follows from the well-foundedness of I which implies that
a, B,v, R and f in 9 are all in W*. If C' were not unique, we would have two internal
distinct ordinals of W that are isomorphic: a contradiction.

Finally, if ERepl hold, then

W™ IYVYZ(ZEY « 3N € AOn(Z)AIF: (wx {0}UN x {1},R) (%, E)).
Notice that W* |= (Y NI = 0) A (Y # 0). Unfortunately, ¥ is not well-founded since
Wk "Y={w+n:ncw\S}"

Hence Y is not in W* and the argument shows that ERepl does not hold in W™,

NON STANDA RD REGULAR FINITE SET THEORY 15

From Theorem 3.2 it follows that NRFST™ is not a conservative extension of RFST
{otherwise one would have con(ZFC) < con(RFST)). This might be interpreted as a
symptom of excessive strength of the extérnal axioms that we have assumed. Indeed,
the plausibility of those axioms has not been sufficiently motivated in relation to the
notion of infinity that we have proposed. Thus the next step would be to investigate
which external axioms can be reasonably included in our theory.

4. BEGINNING MATHEMATICS

If, on one hand, our goal in introducing the theory NRFST* is to have a theory of
sets with a new notion of infinity, on the other hand such a theory should be able to
support existing mathematics.

Starting from the standard and internal natural numbers one can easily define the
internal integers as ordered pairs of internal natural numbers having at least one zero
component. Among them, the standard integers are those corresponding to standard
pairs.

We remark that the usual construction of the integers as equivalence classes would
produce external sets in this context, thus we resort to selecting a peculiar representa-
tive for each equivalence class.

Operations on internal integers can be defined in order to have a structure of com-
mutative ring in which the natural numbers are embedded.

Similarly, one can introduce the internal rationals as ordered pairs of internal integers
whose second component is greater than zero and whose components are relatively
prime. The standard rational numbers are those corresponding to standard pairs.

Here again. we do not consider equivalence classes for the same reason remarked.
above.

Operations on internal rationals can be defined in order to have a structure of field
in which the integers are embedded.

In nonstandard analysis the internal rationals are called hyperrationals, whilst the
name rationals is deserved for the standard ones.

We notice that, given any two nonempty external sets A and B of rationals such
that @« < b for all « € A and all b € B, then there exists a hyperrational ¢ such that
a<e<bforalla € Aandall b € B. The proof of this fact is an application of the
axiom Sat and it rests on the fact that any nonempty external finite set of rationals is
standard (by Theorem 1.3), so it has a greatest element.

Purthermore, if we call infinitesimals the hyperrationals that are in absolute value
smaller than the inverse of any positive standard natural number, the infinitesimals
form an ideal / in the ring F' of finite hyperrationals, where by finite hyperrational
we mean any hyperrational that is bound in absolute value by some standard natural
number.

The ideal I is maximal in the ring /', hence the quotient F/[ is a field that can be
proved to be ordered and complete (completeness follows from what has been noticed
above), and thus it is isomorphic to the usual real numbers.

However, F'/] is an external set, but we would rather use internal elements, and
the idea is that the elements of F'/] can be replaced in every calculation by adequate
hyperrationals approximations of them, without affecting the final result ~ up to in-
finitesimals ~ if the approximations are changed.



16 STEFANO BARATELLA AND RUGGERO FERRO

Along the same line, we would replace real functions (which are external objects in
NRFST™) by internal elements. We propose to use internal functions among hyperra-
tionals. Indeed, if there is a way to approximate a real function by a standard sequence
of standard functions among rationals, applying Sat we should get an internal function
among hyperrationals that should be as useful as the given real function.

5. CONCLUSION

While the axioms for memberships, standard and internal sets are related to the
notion of infinity that we are proposing, the external axioms were introduced in order
to compare NRFST with ZF.

From the results obtained in the second part of this paper,it follows that NRFST*
is equiconsistent with ZF. Thus the notions that we have introduced are no more
foundationally demanding than the usual set theoretic notions. However, one might
still try to conceive different axioms for external sets, whose consistency be strictly less
demanding than that of ZF, and, at the same time, being strong enough to offer a base
for the development of modern mathematics. We also feel that the attitude that we
are proposing can provide a good environment where to search for the origins of the
classical critical aspects of ZF. All these goals will be pursued in future researches.

NON STANDARD REGULAR FINITE SET THEORY 17

APPENDIX

In this section we give a detailed account of the heuristic motivations lying behind
the formal theory that we have proposed. Even if the content of this appendix is not
needed in order to understand the technical developments, nonetheless it gives some
insights that may better motivate our work.

A small overlapping with the Introduction cannot be avoided.

Once accepted that the collection of the natural numbers is not a set but a proper
class (since otherwise we would be assuming that an endless process has to come to
an end yielding a single object, i.e. a set), one is led to a more careful analysis of the
notion of natural number.

The usual intuition that the natural numbers are exactly those entities obtained
starting from zero and repeating the operation of adding one needs to be better speci-
fied. For instance, think of the way of defining the order relation between two nonzero
natural numbers m and n: we have to inspect the chains C; and C, of predecessors of
m and n, respectively. So doing, we assume of being able to recall the entire process of
repeatedly adding one to obtain each of the two numbers.

This “recalling” aspect of the notion of natural number allows us to say that m is
smaller than n if, when n is constructed, one has memory (he recalls) that, during the
process of construction, m was already constructed.

We claim that this recalling is a fundamental feature of the notion of natural number,
even though we do not know of anyone stressing this aspect. Indeed, there is a gen-
eral attitude that one should recall the whole process of construction of every natural
number. If it is so, there is no point in underlining the recalling feature of the notion
of a natural number.

The attitude of recalling everything is a clear consequence of an illuministic stand-
point and we see no reason for accepting it. For instance, with reference to the everyday
experience, we see that it is very difficult to keep track of very long computations, even
with the help of computers, and a lot of techniques have been developed to deal with
this problem. Our position relies on the following stand-point: therc is an agent -
an observer — who knows of being limited in his capability of recalling, although he
cannot determine where his limits are; also he believes that there is something beyond
his limits.

So we will admit the existence of natural numbers, i.e. things obtained from zero
by repeatedly adding one, for which the operation of adding one has been repeated so
many times that it is impossible to recall simultaneously all of the applications of that
operation.

The two features of the notion of natural number, namely adding one and recalling
the steps done, are independent in the sense that, even though one may not recall the
entire process that led to a certain number, one can still conceive of the possibility of
adding one once more.

The natural numbers of which we do not recall the entire process of construction can
be considered unreachable. From the point of view that we are proposing they may be
regarded as infinite, and finite will be the reachable natural numbers.

So we get another notion of infinity.

So far we have considered the natural numbers because we are critical of the notion of
infinity of ZF, based on the acceptance of the collection of natural numbers as forming
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a set, but we should extend our consideration to any set. As usual, sets are thought
of as collections that are also viewed as single elements and can thus become subject
of further mental operations or attributes. Collections themselves are regarded as the
mental act of collecting some elements (possibly none).

In our previous paper [BF93], we already stated which collections we accept to be
considered as sets: those that are bijective with a (unique) natural number. By means of
such a bijection the elements of a set can be indexed by the natural numbers preceding
the number which is the range of the bijection, and the set itself can be viewed as
obtained through a constructing process of adding the next indexed element until the
indices are exhausted.

Now that we are considering finite (reachable) and infinite (unreachable) natural
numbers, we can also divide the sets in finite and infinite ones, according to whether
the natural number to which a set is bijective is finite or infinite, or, equivalentiy, to
whether the process of adding the next indexed element is finite or infinite in our sense.

This notion takes into account the role of the observer: he regards a set as infinite if
he is not able to recall its entire construction.

But then, how to distinguish between finite and infinite sets?

For instance, with respect to a fixed computer, one might define the numbers that
can be recalled as those less or equal to the largest number that the machine can
handle; however such numbers depend on the machine. But we do not want to commit
ourselves to the choice of a specific observer, so we want to keep undefined and open
to any reasonable interpretation the notion that permits to perform the distinction
between finite and infinite sets.

Thus, in the set theory that we propose there is, in addition to the usual membership
predicate, an undefined unary predicate, standard, that will be denoted by st and whose
intended interpretation is that it holds on the elements that are reachable, finite. We
could have chosen the name finite instead of standard for this predicate, but then
we should always specify “finite in our sense”. Furthermore, the choice of the name
standard is related to the homonymous predicate of non standard analysis and non
standard set theory to which we are proposing to give the meaning of finite in our
sense.

As already remarked, the interpretation of the predicate standard does not involve
just the observed world (i.e. the environment described by the set theory introduced in
[BF93]), but it is a relationship between the observer and the observed world. Somehow,
it singles out the elements of the observed world that the observer can know as they
actually are.

All the elements of the observed world form the internal universe and, among them,
those that are too large to be grasped by the observer will be called non standard.

We will assume that the observer has a vague notion of the non standard elements
of the observed world, and, from the point of view of the set theory that we propose,
we want to be able to consider these vague notions as well. To be more precise, since
we are going to work inside a set theory, we want to be able to deal with extensions of
vague notions. So, in the sequel we will replace “vague notions” by “extensions of vague
notions”. Thus we need a further undefined unary predicate, internal, denoted by in,
that will distinguish between the objects of the observed world and the extensions of
vague notions associated to them.
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Of course, standard elements are internal, and the extensions of the vague notions
related to them coincides with what they actually are, but the situation is different for
non standard elements.

Consider, for instance, two different infinite natural numbers, i.e. two sets obtained
by repeating the process of adding one - starting from zero - too many times to be
recalled. The observer will only notice that the standard natural numbers belong to
both sets and that no other standard element belongs to either set, and might have
the same vague notion of both of them.

Furthermore, in order to compare NRFST with ZF, for the moment being, we want
the possibility of fully operating with these non internal sets, so we require the non
internal elements to be “closed” under all the usual set-theoretic operations.

We will call external all the objects that we will deal with, whether they are obtained
from the observed world or from a vague perception of the observed world or by an
operation on external sets previously obtained.
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