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Semantics is the area of logic concerned with specifying the meaning of the logical constructs.
We distinguish between two main kind of semantic approaches to logic. The first, the model-
theoretic approach, is concerned with specifying the meaning of formulas in terms of truth in
some model. The second, the denotational semantic approach, is concerned with specifying the
meaning of proofs of the logic under a compositional point of view. Proofs are interpreted as
mathematical objects called denotation, and the meaning of composed proofs is obtained by
composing denotations. One of the desired features of denotational models is full completeness:
in a fully complete model, every morphism is the interpretation of some proof. Reasoning about
the property of full complete models allows one to have a syntax-free characterization of the
property of proofs. We say that a denotational model is concrete if its elements are not obtained
by the quotient on proofs induced by cut-elimination. Game semantics [6, 5, 1, 2] is a form
of denotational semantics in which proofs are interpreted as winning strategies for two player
games.

In this presentation, we focus on denotational semantics for modal logics. Modal logics are,
traditionally, an extension of classical logic making use of unary connectives, called modalities,
that qualify the truth of a judgement. More precisely, modal logics are obtained by extending
classical logic with a modality operator 2 (together with its dual operator 3), which are usually
interpreted as necessity (respectively possibility).

Beginning with Simpson’s work [10], intuitionistic and constructive modal logics have aroused
growing interest. In particular, during the last three decades the proof theory of constructive
modal logics has been developed considerably providing proof systems by means of sequent
calculi [8, 11], natural deduction and λ-calculus [9, 7, 4].

The subject of our talk will be the basic constructive modal logic: the constructive version
of the modal logic K (called CK) [4]. The formulas of CK are written using the connectives
⊃ and ∧ and the modalities 2 and 3. A complete sequent calculus system for this logic is
obtained by adding the following two rules to a standard sequent calculus system for minimal
logic

A1, . . . , An ⊢ C
K2

2A1, . . . ,2An ⊢ 2C

A1, . . . , An, B ⊢ C
K3

2A1, . . . ,2An,3B ⊢ 3C

In particular, we present a concrete denotational semantics for CK (introduced in [3]). Our
semantics is a game semantics. We present winning strategies that correspond to proofs of CK,
we show that our winning strategies can be composed, and that —furthermore— our semantics
is fully complete: each modal winning strategy is the interpretation of some sequent calculus
proof.
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