Comparable binary relations and the amalgamation property

PAOLO LIPPARINI

Dipartimento di Matematica, Università di Roma "Tor Vergata", ROME, ITAILA lipparin@axp.mat.uniroma2.it

The theory of two binary relations has the strong amalgamation property, when the first relation is assumed to be coarser than the second relation, and each relation satisfies a chosen set of properties from the following list: transitivity, reflexivity, symmetry, antireflexivity and antisymmetry. The result fails, for general comparability conditions, when three or more binary relations are taken into account; however, the result does generalize when all the relations are supposed to be transitive. The amalgamation property is maintained when we add families of unary operations preserving all the relations.

If \mathcal{K} is a class of structures closed under isomorphism, \mathcal{K} is said to have the *strong amalga*mation property (SAP) if, for all $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{K}$ such that $\mathbf{C} \subseteq \mathbf{A}, \mathbf{C} \subseteq \mathbf{B}$ and $C = A \cap B$, there is a structure $\mathbf{D} \in \mathcal{K}$ such that $\mathbf{A} \subseteq \mathbf{D}$ and $\mathbf{B} \subseteq \mathbf{D}$. The amalgamation property is important in algebra, model theory and algebraic logic, among other.

Given two binary relations R and S on the same domain, we say that S is *coarser* than R if $R \subseteq S$, more explicitly, if $a \ R \ b$ implies $a \ S \ b$, for all a and b in the domain. If this is the case, we shall also say that R is *finer* than S. Notice that we use the expression "coarser" in the non-strict sense of "coarser than or equal to". A unary operation f is R-preserving (respectively, R-reversing) if $x \ R \ y$ implies $f(x) \ R \ f(y)$ (respectively, $f(y) \ R \ f(x)$).

Theorem. Consider the following properties of a binary relation R.

- 1. R is transitive;
- 2. R is reflexive;
- 3. R is symmetric;
- 4. R is antireflexive, that is, x R x never holds;
- 5. R is antisymmetric.
- Then the following statements hold.
- (A) For every pair $P, Q \subseteq \{1, 2, 3, 4, 5\}$, the class $\mathcal{K}_{P,Q}$ of structures with
 - (a) a binary relation R satisfying the properties from P and
 - (b) a coarser relation S satisfying the properties from Q

has SAP.

- (B) SAP is maintained if we add families of
 - (i) unary operations which are both R- and S-preserving;
 - (ii) unary operations which are both R- and S-reversing;

- (iii) unary operations which are R-preserving;
- (iv) unary operations which are R-reversing.
- (C) On the other hand, the class of structures with a transitive relation R, a coarser binary relation S and an S-preserving function f has not the amalgamation property (here we do not include the condition that f is R-preserving).
- (D) The theory of an antisymmetric relation S with two partial orders \leq and \leq' both finer than S has not the amalgamation property.

As usual [1], under SAP and for finite languages, we get Fraïssé limits for the class of finite structures; moreover, in case (A) the first-order theory of the Fraïssé limit is ω -categorical, has quantifier elimination and is the model-completion of the original theory.

In spite of (D), the theory of a family of *transitive* relations with some given set of comparability conditions has SAP. See [2] for many more theorems, examples and counterexamples.

References

- Hodges, W., Model theory, Encyclopedia of Mathematics and its Applications 42, Cambridge University Press, Cambridge, 1993.
- [2] Lipparini, P., The strong amalgamation property into union, arXiv:2103.00563 (2021).