Problems with β -Conversion Rules in Type Theory with Quotation and Evaluation Terms

Petr Kuchyňka¹ and Jiří Raclavský^{2,*}

¹ Seznam.Cz, Brno, the Czech Republic p.kuchynka@gmail.com

² Dept. of Philosophy, Masaryk University, Arne Novaka 1, Brno, 602 00, the Czech Republic raclavsky@phil.muni.cz

1. Extension of type theory by quotation and evaluation terms

To increase expressive power, some programming languages (e.g. Lisp, and its sequels, see [2]), extend the language \mathscr{L} of simple type theory $(\mathsf{STT})^1$ by two new terms (here denoted by):

 $\lceil X \rceil - quotation \text{ of the } term X$

 $\|X\|$ – evaluation of the term X

Motivation: Following Farmer, we investigate these extensions for better understanding (from the logical point of view) of programming using such \mathscr{L} s, see his [2, 3] for more details.

Using the familiar Henkin-style semantics for STT, let $\mathscr{V}_v(X)$ be short for $\llbracket X \rrbracket^{\mathscr{M},v}$, where v is an assignment, \mathscr{M} is a model $\langle \mathscr{F}, \mathscr{I} \rangle$, where \mathscr{I} is an interpretation function from constants to objects of \mathscr{F} , and \mathscr{F} is $\{\mathscr{D}_\tau \mid \tau \in \mathscr{T}\}$, where τ is a type belonging to the set of types \mathscr{T} (forming the well-known hierarchy of function types), \mathscr{D}_τ is a domain, i.e. a set (of τ -objects) that interprets τ . Typical values $\mathscr{V}_v(X)$ are written as X etc., i.e. $\mathscr{V}_v(X) = X$. The evaluation rules for $\lceil X \rceil$ and $\lVert X \rVert$ are:

 $\begin{aligned} \mathscr{V}_{v}(\lceil X \rceil) &= X, \text{ where } X/\tau \text{ (read: } X \text{ stands for an object } X \text{ of type } \tau, \text{ i.e. } X \in \mathscr{D}_{\tau} \text{).} \\ \mathscr{V}_{v}(\llbracket X \rrbracket) &= \mathscr{V}_{v}(X), \text{ where } X = \mathscr{V}_{v}(X) \text{ and (optionally) } X, \llbracket X \rrbracket / \tau \end{aligned}$

In other words, while X represents $\mathscr{V}_{v}(X)$ (i.e. X), $\lceil X \rceil$ represents X itself and [X] represents $\mathscr{V}_{v}(X)$. As noted in [2], employment of $\lceil X \rceil$ and [X] necessiates TT with partial functions.

Aims of the paper. Several problems with i. and ii. have recently been observed (some of them solved) by Farmer [2, 3], Tichý and his followers (e.g. [7, 4, 5]). (We use here a partial TT called TT^{*} which lies between the systems in [2, 6, 7, 4].) We focus on various problems related to β -conversion rules, cf. the next section, and propose solutions to them.

2. Some problems with β -conversion of λ -abstracts containing ||X||

Following the ramified typing from [7], [4], $*^n$ is a type of *n*th-order computations X of objects X of various types $\tau_1, ..., \tau_m$. Let $x \in \mathcal{D}_{*^1}$ and $c \in \mathcal{D}_{*^2}$. However, ||c|| is *untypeable* [4], for e.g. $\mathscr{V}_{v_1}(||c||) = x$ and x/τ_1 , but e.g. $\mathscr{V}_{v_2}(||c||) = y$ and $y/\tau_2, \tau_1 \neq \tau_2$.

^{*}Speaker.

¹By Church, Andrews [1] and others ([2, 3]). \mathscr{L}_{STT} : **a** (constants), **x** (variables), **Y**(**X**) (applications), $\lambda x. Y$ (λ -abstractions); syncategorematic expressions: (,), λx . and for \mathscr{L}_{STT} 's extensions by $\lceil X \rceil$ and $\lVert X \rVert$ also $\lceil \neg, \rVert, \rVert$.

Problem 1. In [7], [4], body Y of the λ -abstract $\lambda x. Y$ must fulfil Y/τ , i.e. Y := [c] is excluded. Hence one avoids the following failure of β -contraction rule

$$\beta_c \qquad [\lambda x. Y](Z) \vdash Y_{(Z/x)}$$

where $Y_{(Z/x)} = \mathscr{V}_v(\operatorname{Sub}(\ulcorner Z \urcorner, \ulcorner x \urcorner, \ulcorner Y \urcorner))$. Let $\mathscr{V}_v(x) = X$, x/τ (precisely, x/τ^1 , so $x \in \mathscr{D}_{*^1}$) and $\mathscr{V}_v(c) = x$ (while $c/*^1$, so $c \in \mathscr{D}_{*^2}$) and $\mathscr{V}_v(Z) = Z$, Z/τ ; keeping it fixed below. Thus, $\mathscr{V}_v([\lambda x. \|c\|](Z)) = Z$, for $\mathscr{V}_v(\lambda x. \|c\|) = \operatorname{Id}$ (the identity mapping for objects of type τ), but $\mathscr{V}_v(\|c\|_{(Z/x)}) = X$ (where $X \neq Z$), for $x \notin FV(c)$ (read: x is not a free variable in c) and so $\|c\|_{(Z/x)} = \|c\|$.

Problem 2. The above problem with β_c (re)appears in case (2.a) with $\lambda x.(\lfloor c \rfloor = x)$ which is typeable according to [7], [4]; and in case (2.b) with $\lfloor X \rfloor_{\tau}$ which is restricted to τ [5] (i.e. the above optional type condition for $\lfloor X \rfloor_{\tau}$ is strictly required). Observe again that x that is not present/visible in $\lfloor c \rfloor$ is 'activated' when evaluating the λ -abstract containing $\lfloor c \rfloor$.

Solutions (S1) - (S3).

(S1) Novel definition of evaluation of λ -abstracts. On standard evaluation rules for e.g. $\lambda x.F(x)$ etc., one considers v and assignments v' such that for each v', v' is like v except for x's value. On (A)-approach based on standard approach, $\|c\|_{\tau}$ is v'-evaluated in synchronicity with v'(x). Thus, $\mathcal{V}_{v'}(\lambda x.(\|c\|_{\tau} = x))$ is the function which maps all objects from the range of x to True on any $v^{(')}$; $\mathcal{V}_v(\lambda x.\|c\|_{\tau}) = \text{Id}$ as assumed above. But on (B)-approach, that synchronicity is broken, for one evaluates $\|c\|_{\tau}$ w.r.t. v only. Thus, $\mathcal{V}_{v'}(\lambda x.(\|c\|_{\tau} = x))$ is a function whose values True and False vary; $\mathcal{V}_v(\lambda x.\|c\|_{\tau})$ is a constant mapping, not Id. Works fine, perhaps not entirely intuitive.

(S2) Deep substitution: substitution is repeated and recursively changes variables obtained through the process of evaluation of X; it accommodates (A)-approach. Details complicated; not entirely intuitive either.

(S3) Elimination of $[X]_{\tau}$ while one achieves the same effect by evaluation functionsas-mappings $Eval_{\tau}(\cdot)$. Inherently with (B)-approach; problems not known yet.

References

- [1] Andrews, Peter B. (1986): An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, Academic Press.
- [2] Farmer, William M. (2016): Incorporating Quotation and Evaluation into Church's Type Theory: Syntax and Semantics, In: *Intelligent Computer Mathematics. CICM 2016. LNCS, vol 9791*, M. Kohlhase, M. Johansson, B. Miller B., L. de Moura and F. Tompa (eds.), Springer, 83–98.
- [3] Farmer, William M. (2017): Theory Morphisms in Church's Type Theory with Quotation and Evaluation, In: Intelligent Computer Mathematics. CICM 2017. LNCS, vol 10383, H. Geuvers, M. England, O. Hasan, F. Rabe and O. Teschke (eds.), Springer, 147–162.
- [4] Raclavský, Jiří (2020): Belief Attitudes, Fine-Grained Hyperintensionality and Type-Theoretic Logic. Studies in Logic 88. College Publications.
- [5] Raclavský, Jiří (2022): The Rule of Existential Generalisation and Explicit Substitution, Logic and Logical Philosophy 31(1), 105–141.
- [6] Tichý, Pavel (1982): Foundations of Partial Type Theory. Reports on Mathematical Logic 14, 57–72.
- [7] Tichý, Pavel (1988): The Foundations of Frege's Logic. Walter de Gruyter.