
Problems with β-Conversion Rules in Type Theory with

Quotation and Evaluation Terms

Petr Kuchyňka1 and Jiř́ı Raclavský2,
∗

1 Seznam.Cz, Brno, the Czech Republic
p.kuchynka@gmail.com

2 Dept. of Philosophy, Masaryk University, Arne Novaka 1, Brno, 602 00, the Czech Republic
raclavsky@phil.muni.cz

1. Extension of type theory by quotation and evaluation terms

To increase expressive power, some programming languages (e.g. Lisp, and its sequels, see [2]),
extend the language L of simple type theory (STT)1 by two new terms (here denoted by):

pXq – quotation of the term X

bbXcc – evaluation of the term X

Motivation: Following Farmer, we investigate these extensions for better understanding (from
the logical point of view) of programming using such L s, see his [2, 3] for more details.

Using the familiar Henkin-style semantics for STT, let Vv(X ) be short for [[X ]]M ,v, where v
is an assignment, M is a model 〈F ,I 〉, where I is an interpretation function from constants
to objects of F , and F is {Dτ | τ ∈ T }, where τ is a type belonging to the set of types T
(forming the well-known hierarchy of function types), Dτ is a domain, i.e. a set (of τ -objects)
that interprets τ . Typical values Vv(X ) are written as X etc., i.e. Vv(X ) = X. The evaluation
rules for pXq and bbXcc are:

Vv(pXq) = X , where X/τ (read: X stands for an object X of type τ , i.e. X ∈ Dτ ).

Vv(bbXcc) = Vv(X), where X = Vv(X ) and (optionally) X, bbXcc/τ

In other words, while X represents Vv(X ) (i.e. X), pXq represents X itself and bbXcc represents
Vv(X ). As noted in [2], employment of pXq and bbXcc necessiates TT with partial functions.

Aims of the paper. Several problems with i. and ii. have recently been observed (some
of them solved) by Farmer [2, 3], Tichý and his followers (e.g. [7, 4, 5]). (We use here a partial
TT called TT∗ which lies between the systems in [2, 6, 7, 4].) We focus on various problems
related to β-conversion rules, cf. the next section, and propose solutions to them.

2. Some problems with β-conversion of λ-abstracts containing bbXcc
Following the ramified typing from [7], [4], ∗n is a type of nth-order computations X of objects
X of various types τ1, ..., τm. Let x ∈ D∗1 and c ∈ D∗2 . However, bbccc is untypeable [4], for e.g.
Vv1(bbccc) = x and x/τ1, but e.g. Vv2(bbccc) = y and y/τ2, τ1 6= τ2.

∗Speaker.
1By Church, Andrews [1] and others ([2, 3]). LSTT: a (constants), x (variables), Y (X ) (applications), λx .Y

(λ-abstractions); syncategorematic expressions: (, ), λx . and for LSTT’s extensions by pXq and bbXcc also p, q, bb, cc.



Problem 1. In [7], [4], body Y of the λ-abstract λx .Y must fulfil Y /τ , i.e. Y := bbccc is
excluded. Hence one avoids the following failure of β-contraction rule

βc [λx .Y ](Z ) ` Y(Z/x)

where Y(Z/x) = Vv(Sub(pZq, pxq, pY q)). Let Vv(x) = X, x/τ (precisely, x/τ1, so x ∈ D∗1)
and Vv(c) = x (while c/∗1, so c ∈ D∗2) and Vv(Z ) = Z, Z/τ ; keeping it fixed below. Thus,
Vv([λx .bbccc](Z )) = Z, for Vv(λx .bbccc) = Id (the identity mapping for objects of type τ), but
Vv(bbccc(Z/x)) = X (where X 6= Z), for x 6∈ FV (c) (read: x is not a free variable in c) and so

bbccc(Z/x) = bbccc.
Problem 2. The above problem with βc (re)appears in case (2.a) with λx .(bbccc = x) which

is typeable according to [7], [4]; and in case (2.b) with bbXccτ which is restricted to τ [5] (i.e. the
above optional type condition for bbXccτ is strictly required). Observe again that x that is not
present/visible in bbccc is ‘activated’ when evaluating the λ-abstract containing bbccc.

Solutions (S1) – (S3).
(S1) Novel definition of evaluation of λ-abstracts. On standard evaluation rules for e.g.

λx .F (x) etc., one considers v and assignments v′ such that for each v′, v′ is like v except for x ’s
value. On (A)-approach based on standard approach, bbcccτ is v′-evaluated in synchronicity with
v′(x). Thus, Vv(′)(λx .(bbcccτ = x)) is the function which maps all objects from the range of x to

True on any v(
′); Vv(λx .bbcccτ ) = Id as assumed above. But on (B)-approach, that synchronicity

is broken, for one evaluates bbcccτ w.r.t. v only. Thus, Vv(′)(λx .(bbcccτ = x)) is a function whose
values True and False vary; Vv(λx .bbcccτ ) is a constant mapping, not Id. Works fine, perhaps
not entirely intuitive.

(S2) Deep substitution: substitution is repeated and recursively changes variables ob-
tained through the process of evaluation of X ; it accommodates (A)-approach. Details compli-
cated; not entirely intuitive either.

(S3) Elimination of bbXccτ while one achieves the same effect by evaluation functions-
as-mappings Evalτ (·). Inherently with (B)-approach; problems not known yet.

References

[1] Andrews, Peter B. (1986): An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof, Academic Press.

[2] Farmer, William M. (2016): Incorporating Quotation and Evaluation into Church’s Type Theory:
Syntax and Semantics, In: Intelligent Computer Mathematics. CICM 2016. LNCS, vol 9791, M.
Kohlhase, M. Johansson, B. Miller B., L. de Moura and F. Tompa (eds.), Springer, 83–98.

[3] Farmer, William M. (2017): Theory Morphisms in Church’s Type Theory with Quotation and
Evaluation, In: Intelligent Computer Mathematics. CICM 2017. LNCS, vol 10383, H. Geuvers,
M. England, O. Hasan, F. Rabe and O. Teschke (eds.), Springer, 147–162.

[4] Raclavský, Jǐŕı (2020): Belief Attitudes, Fine-Grained Hyperintensionality and Type-Theoretic
Logic. Studies in Logic 88. College Publications.

[5] Raclavský, Jǐŕı (2022): The Rule of Existential Generalisation and Explicit Substitution, Logic
and Logical Philosophy 31(1), 105–141.

[6] Tichý, Pavel (1982): Foundations of Partial Type Theory. Reports on Mathematical Logic 14,
57–72.

[7] Tichý, Pavel (1988): The Foundations of Frege’s Logic. Walter de Gruyter.


