Universita degli Studi di Firenze

FACOLTA DI LETTERE E FILOSOFIA
FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALL
Corso di Laurea Magistrale in Logica, Filosofia e Storia della Scienza

TESI DI LAUREA IN LOGICA

Truth and Reduction.

A Case Study in Formal Philosophy.

Relatore: Candidato:
Prof. Andrea Cantini Rossella Marrano

Correlatore:
Prof. Pierluigi Minari

Anno Accademico 2011-2012



Doubt thou the stars are fire,
Doubt that the sun doth mowe,
Doubt truth to be a liar,

But never doubt I love.

William Shakespeare, Hamlet Act II scene I1.
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Introduction

This work is concerned with the notion of truth and some related logico-
philosophical issues. Truth has been one of the central topics of discussion
throughout the history of philosophy. The modern dispute about truth takes
place on several levels and involves various philosophical disciplines: ethics,
theology, metaphysics, hermeneutics, logic, epistemology, linguistics, theory
of knowledge. My reflection fits into a specific school of thought which
favours a logical-linguistic approach to truth. I argue that it is essential
for discussions concerning broad problems (like truth, necessity, meaning,
etc.) trying to make the concepts used as clear as possible. This must
be done with every means: definitions, axiomatic procedures and so on.
Implicitly, I commit myself with the idea of formal philosophy: the idea
of investigating philosophical problems by means of rigorous methods of
mathematical logic. Although the approach is formal, the starting point and
the destination are purely philosophical issues and moreover a philosophical
attitude permeates the whole research. The overall aim is to let philosophical
desiderata communicate with formal results.

The viability of an axiomatic approach to truth has been thoroughly ex-
plored with fruitful and interesting results and many different axiom systems
for truth have been discussed in the literature. One of the possible ways to
investigate their respective properties is comparing them from various points
of view. In this study I plan to focus on the features of a meta- and inter-
theoretical inquiry in axiomatic truth theories. The aim is to emphasize the
relevance and the effects of this analysis, since in exclusively technical papers
this point is often left unexpressed, though not ignored. This will be done
by analysing motivations, methods, possible outcomes and trying to let the
issue benefit from a purely logical research.

The work is broadly dived into three main parts: the first part is a sort
of introduction to the vast world of axiomatic theories of truth, then I shall
focus on the main problem, that is why and how comparing theories of truth,
and I shall introduce some hypothesis that will be sustained in the last part
by presenting a case study. These parts correspond to three chapter, let us
briefly expose contents and purposes:

1. The first chapter is dedicated to some axiomatic theories of truth that



will be useful throughout the work. This introduction is embodied in
a more general framework: a short account of the Tarskian turn will
allow us to present axiomatic truth theories as the results of a logico-
philosophical strategy in dealing with truth. The underlying method-
ology is not an historical survey, rather the approach is synoptic: my
choice is to present theories following as leitmotiv the efforts put in
place in order to avoid paradoxes. I plan to present axiomatic theories
of truth as possible solutions for semantical paradoxes. A large variety
of axiomatic theories of truth have been proposed in the literature, I
shall focus just on some of them.

. The second chapter is concerned with the theme of reduction and it
has a philosophico-methodological character. The starting point is the
reduction between formal systems, a wide subject that will be tackled
by outlining some broadly distinctions as guidelines. Once the kind
of reduction I are interested in is identified, I shall address a formal
overview on the most used notions of reduction. The core of the chapter
is an attempt to relate the issue of reduction with truth theories. This
issue will be articulated from different points of view: why comparing
truth theories? how to compare them? what do we aspect from this
kind of analysis? I shall argue in favour of the philosophical relevance
of such an inquiry by stressing to what extent axiomatic theories of
truth reveal some peculiarities which allows us to cast light on issues
concerning both truth and reduction per se.

. In the third chapter I shall introduce a case study in order to support
the previously stated theoretical claims. A recent type-free theory of
truth, Feferman’s theory of determinate truth DT, will be introduced
emphasizing both philosophical motivations and critical assessment. I
shall report, with proof, some results about the proof theory of DT
in order to underline its relationships with other theories of truth and
with a mathematical system; that is to say DT will be submitted to
a metatheoretical inquiry. Moreover, in the last part of the work I
shall carry out an inedit comparison between this theory and a the-
ory of truth and propositions proposed by Cantini. In this respect, I
underline some obstacles to a possible reduction of one theory to the
other, in spite of this such a comparison will allow me to stress some
interesting philosophical points. Although the approach used in this
chapter is mainly logical, logical results will be glossed with philosoph-
ical remarks.



Chapter 1

Axiomatic theories of truth

I have characterized axiomatic theories of truth as the results of a logical
approach to truth. The first section is devoted to explain this claim. Then
I shall describe how axiomatic theories of truth are effectively built.

1.1 A formal approach to truth

The starting-point is the word ‘true’ in everyday language and its main use
as a grammatical predicate which takes nouns and phrases as subject:

This is true.

It is true that a word to the wise is sufficient.
The second sentence of this list is true.

What you said yesterday is true.

“True’ seems to be a predicate which attributes a property — truth — to
some entities. There is a considerable literature devoted to the problems
whether truth is a property and, if so, in relation to what it is a property.
I shall follow many contemporary philosophers’ answers to these questions,
which consider truth as a property of sentences. Truth can be considered a
property since the unary predicate ‘is true’, the truth predicate, has a non
trivial extension, i.e. an extension which is not empty nor does it consist
of everything. What kind of entities populate its extension? What sort of
things are true (or false)? I choose sentences (linguistic items within a specific
language) as the primary bearers of truth between the different candidates:
utterances, beliefs, propositions and sentences; but it should be pointed out
that the sentences we consider are fully interpreted or meaningful sentences.
Moreover, we assume the sentences in question to be ‘eternal’ sentences,
i.e. sentences which are not context-dependent and, so, do not change their
content according to across occasion of use.



Talking about truth, we implicitly accept a non trivial assumption: the
notion of truth is an essential one, it plays an important role not only in
natural languages, but also in philosophical, logical, mathematical, empirical
theories. We even assume that something meaningful can be said about it.
As Soames! observed, there are several forms of truth skepticism, i.e. lines
of thinking that question these assumptions. Among them we can recall the
beliefs that true is undefinable, unknowable, irreducibly metaphysical and
that truth predicate is trivial and dispensable. I refer to his work for a deeper
discussion on this topic, I just say something about the supposed triviality of
truth predicate. The problem is whether we need it as independent predicate:
which functions can it perform? Is it dispensable? It is often said that truth
is a disquotational device?, which allows us to transform a sentence into a
term and vice versa simply by placing or removing quotation marks:

‘Snow is white’ is true if and only if snow is white.

Sentences like this, called T'(arski)-sentences or disquotation sentences, re-
flect our intuitive answer to the question: when is a sentence like ‘Snow is
white’ true? The set of such sentences is generated by collecting the instances
of an axiom schema:

The sentence ‘¢’ is true if and only if ¢.

These biconditionals connect a sentence (¢) with an object (‘¢’ is the name
of a sentence; so it is a term, no longer a sentence). In other words, we can
state a sentence turning it into an object and asserting that this object is
true. This link is made possible by the truth predicate. The problem now
is whether we can always eliminate the truth predicate by erasing it and
removing the quotation marks. If this were the case, then the concept of
truth would be redundant. According to some philosophers the predicate is
true is not used to describe anything: saying “‘¢’ is true” is just a redundant
way of saying ¢. As we have just seen, this may be true to some extent as
long as truth is attributed to single, explicit sentences. However, the main
problem for this kind of redundancy theory is posed by examples in which
the sentences that are said to be true are not directly displayed (called blind
ascriptions):

1. Everything Aldo said yesterday is true.
2. Something Barbara believes is true.

3. Tarski’s theorem is true.

'Cfr. Soames [44].
2T skip the question whether truth is nothing more than a device of disquotation, as
diquotationalists hold.




In such cases the truth predicate cannot simply be erased, because we do
not know exactly the sentences of which truth is predicated. There is a
second way in which the truth predicate is essential: it allows us to express
infinitely long disjunctions and conjunctions. Quine gives an example of how
we can reduce ‘infinite lots of sentences’ to single sentences containing the
truth predicate. Consider the infinite conjunction of sentences like:

If time flies then time flies.
If snow is white then snow is white.

If we want to state all these sentences by using just one sentence and without
quantifying over sentences we can say:

All sentences of the form ‘If p then p’ are true.

The truth predicate allows us to assert in a single sentence the infinite con-
junction of all sentences having that logical form. In other words, by using
the truth predicate we are able to say something we could not say without it.
Hence, it has an expressive power which extends the strength of our language
and it must be considered as a genuine, non redundant, predicate.

Having made clear to what extent an inquiry about truth is legitimate,
let us turn our attention towards the philosophical debate about it. I just
want to provide a very brief account of this issue, sketching the principal
trends and the turning point marked by Alfred Tarski.

The traditional philosophical debate about truth focused on substan-
tial definitions, i.e. attempts to answer the age-old question: what is (the
essence of)) truth? Different proposals have been made in this direction; the
most significant are the correspondence, coherence and pragmatist theories
of truth. They share an important presupposition: the required definition
has to be explicit, namely one which allows a complete elimination of the de-
fined notion. These theories are distinguished by their relative views about
the nature of truth and about the truth bearers. In a nutshell: the basic idea
of the first is that what we say (or believe) is true if it corresponds to the
facts (the way things actually are); coherence theorists hold instead that a
belief is true if it is part of a coherent system of beliefs and, lastly, according
to pragmatists there is a deep connection between truth and usefulness.
Even this rough presentation brings out that the main difficulty of defini-
tional theories of truth is their vagueness. The definiens (correspondence,
coherence, utility) is no clearer than the definiendum, that is, the notion of
truth. The vagueness cannot be erased until an uncontroversial explanation
of the meaning of the terms ‘correspondence’, ‘fact’, ‘coherent systematic
whole’, etc. has been given.

3In each theory the notion of truth is part of a more extensive metaphysics or episte-
mology.



Traditional attempts to define truth embody an intuitive knowledge of
the concept of truth, knowledge that everyone possesses to a certain degree;
but from the point of view of formal correctness and clarity they do not
seem appropriate. So, they should be considered more as explanations of
some characteristics of the intuitive notion ‘truth’ rather than as rigorous
definitions. Therefore, it would be better making our intuitive assumptions
about truth explicit, without resorting to other notions that are less clear.
The fist step in this direction is the reformulation of the problems in a formal
setting.

It was the Polish logician, mathematician and philosopher Alfred Tarski*
who upset the terms of the debate, starting the modern discussion about
truth and articulating a theory of truth which describes the functioning of
the concept of truth, and no longer its essence. Another radical shift is due
to him: the reformulation of the issue in a formal framework. He pointed
out the lack of formal precision which the previous theories suffer from and
restricted his attention mainly to formalized languages, namely languages
whose structure has been exactly specified. It means that one must charac-
terize unambiguously the class of the expressions which are to be considered
meaningful, defining inductively the classes of terms and sentences, provid-
ing the axioms (primitive sentences asserted without proof) and the rules of
inference to deduce new sentences (theorems)®. Only in such languages the
problem of definition of truth obtains a precise meaning and can be tackled
in a rigorous way.

Having made the problem clear in a formal language, that is a fragment
of English containing T', the question becomes: is it possible to define truth
within it? I shall show that Tarski himself provides a negative answer: the
assumption that there is a definition of truth within a given language for
the same language leads to a contradiction. Therefore, the only way is take
truth as a primitive notion and make clear what is expected from it. In
formal terms, it means to expand the language by a new primitive predicate
for truth, T, and to lay down the axioms for it. This approach does not
presuppose definability, but at the same time it might be compatible with
the view that truth is definable: it simply does not commit itself to the
question whether truth is definable or not.

Once we have chosen non-definitional theories of truth, we are again at a
crossroads: theories of truth can be further divided into two classes. There
are semantic theories of truth and axiomatic ones; but, as we shall see soon,
these approaches are in some ways complementary. Roughly speaking, the
former are mainly interested in describing models for a language that contain
the truth predicate by providing an interpretation of 7' (model-theoretic ap-

“See Tarski [45]

5That which he call formalized language in modern terminology is a deductive or formal
system, being a language just the list of the alphabet and the recursively defined strings
on it.



proach), while the latter in explicating basic principles governing the concept
of truth (syntactical approach).

This distinction should not be over-emphasized because the two ap-
proaches are deeply interwoven. Anyway, we are going to deal with ax-
iomatic theories of truth and I plan to justify this choice throughout the
discussion. But some reasons can already be stressed. First, axiomatic theo-
ries of truth require a very weak logical framework and they suffice for spell
out truth properties in full. Moreover, we seek a theory of truth for our
language, i.e. a language that includes the language in which the theory is
expressed. Axiomatic theories of truth do exactly this: although they do not
provide nothing but an operational meaning of the truth predicate, they do
not transcend the language in which T is stated. If, as I argue, the aim of
a truth theory is to investigate the notion of truth for a natural language,
then the most suitable setting to do this seems to be a syntactical one.
Embodying truth in a theory of syntax does justice to our presentation of
truth as a linguistic notion, whose bearers are linguistic entities (meaningful
sentences). Another important reason is the following: given axiomatiza-
tions may be varied in natural ways by dropping conditions or extending
general principles. I argue that this freedom is the most important gain of
dealing with axiomatic theories. Last but not least, one can compare ax-
iomatizations as to their proof-theoretical strength, using an extensive body
of well-established metamathematical techniques. Anyway, model-theoretic
approaches are important to clarify specific properties of the notion of truth,
to investigate models of axiomatic truth theories and to analyse their proof
theory. Therefore, semantical and axiomatical approach complement one
another.

Summarizing, the strategy for a logical and syntactical approach to truth
is the following:

1. reduce issues concerning truth to ones concerning the logico-linguistic
predicate ‘is true’;

2. analyse the truth predicate in natural languages by studying its be-
haviour in formalized languages;

3. fix a formalized language, the so-called base theory;

4. if the base theory is an arithmetic theory, be aware of Tarski’s theorem
of undefinability of truth;

5. expand the base theory (trying to preserve the consistency) by adding
the truth predicate, its axioms and rules of inference.

In what follows I shall focus on steps 3., 4. and 5.: the second section will
describe the base theory most widely used in literature, PA; the third section
I shall consider the inconsistent theory obtained by extending PA with a
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truth predicate and all the Tarski’s biconditionals. This will bring us to
consider other strategies of axiomatization in the fourth section.

1.2 Base theory and coding

Once we take truth to be a predicate, we need a theory to govern objects
in its extension. In other words, we have to provide a formal framework (a
mathematical fragment of a natural language) in which to embed a theory
of truth: the base theory. Truth theories can be built on many different
systems, usually a well-known mathematical theory such as PA, weak sub-
theories of PA or set theories etc. are used. There are many advantages in
using PA as base theory: it is neither too weak nor to strong to be combined
with truth axioms.

Definition 1.2.1. The first-order language Lpp of Peano Arithmetic con-
tains as logical vocabulary propositional operators (connectives) and quan-
tifiers, an infinite stock of variables ranging over natural numbers and the
identity relation =. The mathematical vocabulary of Lpa consists of a suc-
cessor function symbol s, a zero constant 0, and function symbols 4+ and x for
addition and multiplication. The set w of natural numbers is the set which
contains 0 and it is closed under the successor function. We assume that
for each n € w, there is a closed term 7 € Lpa, a numeral, which represents
it. The inductive definitions of terms and formulae are built in the usual
manner. We consider the smaller-then relation < as a defined predicate.
The language is supposed to contain a symbol for each primitive recursive
function as well. As logical axioms we take some standard formulation of
classical first-order logic. The non logical axioms of PA are:

(PA1) —3x [s(x) = 0]

(PA2) Vavy [s(z) = s(y) = = = y]
(PA3) Vz [z 4+ 0 = z]

(PA4) VaVy [z + s(y) = s(xz + y)]
(PA5S) Vz [x x 0 =0]

(PA6) VaVy [z x s(y) = (z X y) + 7]
(

PAT) ¢(0) AVz(p(z) = ¢(s(x))) = Vao(x) for all ¢(x) € Lpa

The last of these axiom is an axiom schema: it stands for an infinite
collection of axioms obtained by instantiating it with each formula of the
language. This schema, which is called principle of mathematical induction,
is known to be equivalent to the least-number principle:

Frg(x) — Fu(p(z) AVy < 22¢(y)).

8



It should be noted that by adding a new predicate to the language of PA
new formulae are created and they have to be considered as instances of
(PAT). We call PAT the system based on the language L7 = Lpa U {T'}.
PAT is given by the axioms of PA and all instances of the induction schema
with the truth predicate. For each system S extending PA and formulating
in L7, S| will be the system itself without any induction axioms containing
the truth predicate.

The objects of our base theory are numbers. How can we speak about
sentences or about linguistic objects on the whole? We have to fix some
coding of the language to which T is to be added. For any language there
is a way to associate a number to each linguistic expression: the method of
arithmetization or gddelization of syntax. It allows us to reasoning on the
expressions of some logico-mathematical language in an arithmetic theory.
So, a number theory as PA has the peculiarity of being the theory we want to
code and, at the same time, the theory we use to code. The starting point is
a one-to-one mapping of the alphabet into natural numbers. As consequence,
each word (sentence) will correspond to one and only one natural number
sequence (sequence of natural number sequences). Furthermore, sequences
of natural numbers can be coded by numbers. Thus, each expression of the
language ¢ is expressed by natural numbers. There are different strategy to
do this, but for our purposes it does not really matter which one is used.

We need, moreover, to talk about relations and operations of the syntax
of £ within a theory based on it. This can be done: by using arithmetiza-
tion, syntactical and morphological concepts can be treated as collection of
numbers (the codes of the object that fall under that concept). For a given
language Lpa we introduce the formal representation of some primitive re-
cursive relations for its syntactical notions:

Termg,, (z) (CTzpa(2)) < xis acode of a (closed) term of Lpa;
Varg,, () < x is a code of a variable of Lpa;
Fmlg,, (x) (AtFmlg,, (z)) < « isa code of an (atomic) formula of £;

Sentzp, (z) (AtSentz,, (z)) < =z is a code of an (atomic) sentence of
Lpa.

I shall omit the subscript £pa when the context allows it.
The same holds for syntactical operations: Lpa has primitive recursive
representations for them.
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num(n) ="n7,

sub("e, Tt Tu ) = Telt/ux]

In these definitions ¢, s, t1, . . ., tx are terms, ¢ and v formulae, v, is a variable,
R is a k-ary predicate symbol and e[t/v] is the result of replacing in e each
free occurrence of a variable vy by a term t. When is it clear from the
context which variable is replaced with ¢ I write "¢(¢)™. I write "¢(x)™ for
sub("¢(v) ", num(z),"v7), the expression of Lpa standing for the operation
of replacing in ¢ the variable v with the z-th numeral. These definitions are
extended in the obvious way for cases with more than one free variable. We
also need a function which provides the value of a term ¢, val(t) = ¢°, which is
a number if ¢ is closed term. Some other notational remarks: I write V¢ ¢(t)
as an abbreviation of Vx (CTz(z) — ¢(z)) and I will write Sentp(zVy),
Sentr(xAy) or Sentr(z—y) instead of Sentr(x) A Sentr(y) since the former
formulations and the latter can be proved to be equivalent in PA.

1.3 Tarski’s theorem and the Liar

Given a base theory, the first move in building a truth theory might be to
find a formula T that explicitly defines the truth predicate. According to
Tarski, a truth definition should meet an adequacy condition: saying ‘the
sentence ¢ is true’ should be the same of saying ‘¢’. Although it seems to
be a very intuitive and acceptable condition — it mirrors the use we make
of the truth predicate in our natural language — the claim that there is
a formula T'(z) satisfying all of them cannot be fulfilled. This limitative
results is the content of the Tarski’s undefinability theorem. This theorem
follows as corollary from the diagonal lemma or fized point theorem, which
establishes the existence of self-referential sentences in a formal system in
which a Gédelnumbering is available. Such systems have to contain a portion
of arithmetic, at least the system of minimal arithmetic Q, in which every
recursive function is representable .

Theorem 1.3.1 (Diagonal lemma — Go6del, 1931). Let S be a formal system
containing Q. For every formula ¢(x) € Ls, there is a sentence € Lg such

SFor an explanation and details see Boolos and Jeffrey [4], chapters 16 and 17.
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that:
SFB« ¢("87/x),

where ¢("37/x) is the result of substituting in ¢ for the variable x the code
numeral for 5.

The diagonal lemma says that the diagonal function is expressible in any
system containing a small portion of arithmetic; namely, in a very intuitive
and common way of saying: if S is enough powerful then sentences of S can
coherently talk about themselves. More formally, a sentence § is S-provably
equivalent to another sentence that attributes to 5 a property ¢. That is why,
it is usually said that ‘5 says about itself that it has the property expressed
by ¢’. The sentence 8 can also be viewed as a fixed point of the formula
¢(x), or better a fixed point of the operation assigning to each formula
the sentence ¢("¢7).
The theorem 1.3.1 yields the undefinability theorem:

Theorem 1.3.2 (Undefinability Theorem — Tarski, 1936). No consistent
extension S of Q proves

¢ T("¢")
for any sentence ¢ € Ls.

Proof. In order to obtain a contradiction, we assume that there is a consistent
formal system S extending Q which proves all Tarski-biconditionals, then in
particular it proves

AT,

where A is a liar-like sentence, that is a sentence that says of itself that it
is false. We use the extended diagonal lemma to produce the liar sentence
such that:

Sk« =T(TAY).

These equivalences together yield a contradiction in S:
SET(AY) < =T("A7).
O

The notion of truth, as it is formalized by Tarski-biconditionals, cannot be
internalized within an arithmetical theory: such systems cannot define their
own truth. In proving this, the causal role of the Liar comes out. Contradic-
tion is engendered by formalizing the liar sentence through diagonalization:
A ‘says of itself’ that is false. This conflicts with the Tarskian adequacy con-
dition for truth. Therefore the only viable way is to move to step 5. of the
initial list: expanding the base theory (trying to preserve the consistency)
by adding the truth predicate as a primitive, non-defined one. The interpre-
tation of this predicate is fixed by providing axioms and rules of inference.

11



In doing this we have to keep a close eye on the inconsistency problem, as
we shall see immediately.

The most immediate and natural choice seems to take T-biconditionals
as axioms. Let us consider the system PAT based on the language L =
Lpa U {T'} without any truth axiom and expand it with an axiom schema:

T for any sentence ¢(z) € L.

That is to say, given the impossibility of finding an Lpa-formula such that
all the Tarski-biconditionals for the language L1 are proved, a new predicate
is added and they are simply taken as axioms. By doing so we have built
an axiomatic theory of truth that we call NT, the naive theory of truth,
following Horsten”. This theory is trivially inconsistent for the theorem
1.3.2, nevertheless I judge it interesting for heuristic purposes, as far as this
theory to some extent formalize the liar paradox and so, it allows an analysis
of the paradox itself.

In order to carry out this analysis, our starting point is the liar paradox
in natural languages; let us take it in its most famous version: “I am lying
now” or “This sentence is false”®. It is worth noting that the formalized
version of the paradox is a far greater threat for a formal system than it is
its intuitive version for natural language. Tarski’s diagnosis in [46] about the
Liar is that natural language is infected by contradiction. But there is no
agreement about it: can natural language be regarded as inconsistent? An
interesting stance, that I can just mention, is due to Burge. He argued that
when we blame natural languages for contradictions actually we are referring
to something that is no more natural but already ‘theory-laden’:

Natural languages per se do not postulate or assert anything.
What engenders paradox is a certain naive theory or conception
of the natural concept of truth?.

Hence, in his opinion, paradoxes do not affect the language itself but rather
our very intuitive theories about the language. As far as formal systems are
concerned, there is no way out: if the Liar can be carried out in a formal
system, the latter becomes inconsistent. At any rate, for our discussion it
does not really matter whether conditions that let the paradox arise are
considered as related either to the language or to part of an intuitive theory
about language: they should be viewed only as a bridge for the analysis of
the paradox in formal systems.

Following the notorious Tarskian diagnosis!'?, it is possible to isolate the
roots of the paradox, i.e conditions without which it would not be generated:

"Cfr. Horsten [31], p. 55.

8These sentences are roughly formulated, anyway it is not a problem to write down a
non-contingent liar sentence.

9Cfr. Burge [5], p. 179.

10Cfr. Tarski [46], p.165.
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1. Our ordinary language has a quotational mechanism (which gives a
name to each sentence). Moreover, it admits self-referential sentences
such as “This sentence is written in English” and, furthermore self-
referential sentences which involve the notion of truth such as “This
sentence is true”.

2. We implicitly accept Convention T', namely the fact that the truth of
a sentence is reduced to the sentence itself and vice versa.

3. We accept ordinary reasoning, especially bivalence, i.e. the claim that
a sentence must be either true or false.

These implicit conditions seems very uncontroversial and, at the same
time, impossible to avoid. Natural languages, even though rich and interest-
ing, do not admit the needed handling for an analysis of the paradox. To
address this issue by using logic as a tool is a fascinating strategy since it
gives us the chance of turning these intuitive features of natural language in
formally specified conditions of a formal system. In this way, the roots of
the paradox can be escape routes as well: in a formal setting one can remove
or modify any of the conditions in order to avoid the paradox and to ward
off the inconsistency of the theory.

Now we can turn previous conditions in formal terms. Let S be a formal
system on the language L, with the predicate T'(x) expressing that x is true,
the contradiction via liar paradox is a result of the following combination of
features:

1. Syntax:

(i) Naming: each sentence ¢ of £ has name in the language, the
closed term "¢ of L.

(ii) Self-reference: via diagonalization, for each formula ¢(x) we can
find a sentence 8 which is provable equivalent in S to ¢("57).

2. Basic principles: Tarski biconditionals are accepted for each sentence
of [,T.

3. Logic: The underlying logic is a standard formulation of classical first-
order predicate calculus!!.

Of course, these properties are desirable for a theory of truth that aims to be
as close as possible to natural language. But at the same time, they cannot
be all simultaneously satisfied on pain of inconsistency. NT meets all stated
condition, hence it is inconsistent. At this point the question is: how can we
do better than NT?

11 Actually since the law of excluded middle is not used in the derivation of the paradox,
the argument is already derivable in minimal logic.
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1.4 How to face the Liar

Following Feferman'?, I said that the roots of the paradox once isolated in a
formal system may also represent the possible ways out: by dropping some-
how one of them one can ensure the consistency of the theory. Corresponding
to 1.-3. there are three kinds of restriction:

1*. Restriction of syntax.
2*. Restriction of basic principles.
3*. Restriction of logic.

The choice of a strategy does not uniquely determine a theory, because re-
strictions can be designed in different ways. And indeed it was so, historically
many different and consistent truth theories have been developed. The fil
rouge I shall follow in presenting theories is their connection with the strate-
gies put in place to avoid the paradox. This reflects a definite belief about
the philosophical value of truth theories: they are possible solutions for se-
mantical paradoxes. This is why we are interested in the way in which they
‘solve’; actually ‘go around’, the Liar. We shall follow the three points above
to orient ourselves in the constellation of axiomatic theories of truth; how-
ever, I am going to provide a very brief account, focusing on theories that

will be useful throughout our discussion'3.

1.4.1 Restriction of syntax

Let us have a closer look to the first restriction. The process of naming in
formalized language is a tool that simulates the device of quotation in natural
language: if truth is seen as a property of sentences there should be linguis-
tic objects representing them. In more formal terms, truth is a monadic
predicate T' which applies to closed terms, namely numerals of gddelian of
sentences. What about self-reference? Is it dispensable at least for formulae
containing the truth predicate? The strategy might be to impose restrictions
to the language, particularly on the formation of formulae by forcing a sort of
stratification. This is the Tarskian strategy, the most immediate and simple
solution to the Liar. In this way, the language about which we talk (object-
language) and the language we use to talk about the former (metalanguage)
are distinguished. The object-language does not contain the truth predicate,
it just contains truth-free sentences and a truth definition for it has to be
given in a metalanguage which is essentially stronger than it. Then, we can
define the truth predicate for the metalanguage in a meta-metalanguage and
so on. This process can be iterated and a hierarchy of languages can be built:

12Cfr. Feferman [14], p. 81
13For an organic presentation see Halbach [28] or Horsten [31].
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a truth predicate for a language Ly is available only in a second language
L1, whose truth predicate in turn must belong to a language L5 etc. Hence
TT¢7"is a sentence of a language £, if and only if ¢ is a sentence of £,,_1, in
this way a truth predicate is only applied to formulae containing variables
that range over arithmetic (i.e. truth free) formulae or over formulae of the
previous language in the hierarchy. So, liar-like sentences are no longer well-
formed and, accordingly, they cannot be substituted in the T-schema. This
prevents contradiction from arising.

However, as it has been repeatedly emphasized, this strategy seems to
be excessively restrictive for at least three reasons:

e It rules out unproblematic sentences as well; sentences that should be
admissible, or at least expressible in a language.

e Regarding problematic sentence, to require that they are not sentences
at all would be like uprooting a plant that should be just pruned.
In fact, sentences as the liar one become critical only when they are
submitted to the disquotational device.

e In natural languages there is no sign of this stratification. Since the
pretended unnaturalness of typing is open to discussion, the last state-
ment has to be justified. It was already said and it will be repeated that
since we are working in an artificial framework to advocate issues of
naturalness would be needlessly restrictive. Nevertheless, I argue that,
as far as this kind of typing (with syntactic restriction) is concerned, we
move away overmuch from the ordinary language. The language L,
though artificial, keeps the familiar shape of other languages: there
are words, sentences and truth is a property of whatever (codes of )
sentences. Stratification of the language would drastically diminish the
chance of apply formal theory to informal language. This is not to say
that the aim is to reconstruct natural language in a formal theory, but
to preserve that loose syntactic resemblance could help once a philo-
sophical approach to axiomatic theories of truth is adopted. To this
aim, an intended interpretation of a truth theory should be retained:
terms stand for whatever sentence and the truth predicate expresses
a property of these sentences. Therefore, I argue that we should use
an untyped truth predicate; note that this does not rule out typed truth
theories. Unlike syntactic restriction, there are other kinds of typing
that seem less problematic: the truth predicate has an ‘operational
definition’ given by providing axioms, so principles governing its ac-
tion should be formulated without restraint and without the ghost of
naturalness.

Hence, a better strategy seems not to limit the expressive power, understood
strictly, of the theory, but to restrict the application of Tarski-biconditionals.
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This brings us to the second way: the restriction of basic principles. As we
shall see, the distinction between 1* and 2* is fine but nevertheless significant:
on the one hand, we have a restriction in the inductive definition clauses for
formulae, on the other hand, language is left unchanged but the axioms are
weakened. Therefore, the Tarskian hierarchical approach moves from the
language to the basic principles, in other words one allows the presence of
sentences with iteration of truth predicate but axioms concern just truth free
sentences. However, the results is the same: a typed theory of truth is built,
that is a theory that does not allow self-reference. So, there are two ways
in which one can obtain a typed system: with a syntactic typing (as in the
way 1*) or by formulating its axioms in a way that renders it a typed system
(2*). T argue that this distinction has to be taken in account talking about
the naturalness of typing.

At any rate, typing is not at all the only solution for the liar: still re-
maining within the strategy 2* we shall see there are other ways to bound
the axioms in such a way that the resulting theory is type-free. As Hal-
bach'® noted, there is a sufficient condition for a theory’s being type-free: it
has to prove the truth of at least a sentence containing the truth predicate.
Type-free theories are also called theories of self-referential truth.

1.4.2 Restriction of basic principle

Once a restriction of principles is chosen, the obvious principle needing re-
striction is the T-schema as adding all Tarski-biconditionals to a base theory
that allows the diagonalization leads to contradiction. At the same time, in
restricting basic principles there is the attempt of limiting as little as pos-
sible the expressive power of the theory and preserving interesting features
of T such as compositionality or iteration. I now sketch possible ways for
bounding or weakening T-schema and the resulting theories!:

2*a. To restrict the disquotational schema to Lpa-sentences or Lpa-formulae

[Theories TB and UTB|.

— To add compositionality clauses for T'. [Theory CT]|

— To allow iteration of the truth predicate by resuming the Tarskian
idea of hierarchical theories of truth |[Theories {RT4}|.

'“Cfr. Halbach [28], p. 145.

150f course it is an a posteriori reconstruction based on the most widely used theories
of truth. There are many different ways to pursue restriction aimed at avoiding paradoxes.
Another possibility T would like to mention is due to Leitgeb, his answer for the problem
of restricting biconditional is based on the semantic notion of dependence: sentences with
truth predicate that can be inserted plausibly and consistently into the T-schema are those
sentences which depend directly or indirectly on non-semantic states of affairs (only), in a
sense formally precised. I do not include his theory in this survey as far as it is a semantic
theory whereas we are dealing with syntactical ones.
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2*b. To restrict the disquotational schema to special classes of Lp-sentences
|[Theories PTB and PUTB.

2*c. To consider instead of T-schema the corresponding (and weaker) rules
of inference [Theory FS.

Typed disquotational truth

An axiomatization of truth based on T-schema is desirable and Tarski himself
provided an axiomatization of this kind. A possible route to avoid inconsis-
tency is to restrict the disquotational schema to sentences of Lpa without the
truth predicate. In this way we obtain a typed system in which no sentence
of the form TT ¢ with ¢ € L7 can be proved, this system is called TB for
Tarski-biconditionals.

Definition 1.4.1. The theory TB comprises all axioms of PAT (PA formu-
lated in L£7) and, moreover, all sentences of the form 77 ¢ <> ¢ where ¢ is
a sentence of the language of Lpa.

In this theory, the formulae ¢ are sentences, but this request can be released
and the theory strengthened. If the formulae ¢ are allowed to contain free
variables, the theory UTB— acronym for uniform Tarski-biconditionals —
is obtained.

Definition 1.4.2. The theory UTB comprises all axioms of PAT and all
sentences of the form

o

Vi, oot (T Oty t,) Ve Bt o tn))

where ¢(z1, ..., x,) is a formula of the language of Lpa with exactly z1,...,z,
free.

By the conventions, ¢t~ stands for the value of the term ¢ and "¢ (¢) stands for
To(t/T2 )7, ie. the result of substituting all free occurrence of the variable
x with ¢ in ¢(x). Intuitively, biconditional displayed in the definition says
that ¢(t1, ..., ty,) is true if the relation denoted by ¢ holds between the terms
denotations. Theories TB| and UTB]J are, respectively, the theories TB and
UTB with the induction schema restricted to the language Lpa.

It can be showed that in TB the liar paradox cannot be derived: the liar
sentence A belongs to L7 and not to Lpa, so it is not a permissible substi-
tution in the T-schema. Although this is not enough to state its consistency
— it is a necessary but not sufficient condition — we can find a model based
on natural numbers for TB, hence, by the soundness theorem, TB is consis-
tent. So TB has some interesting features, among which we can mention the
conservativity over PA, nevertheless it is to some extent deductively weak.
As said before, that with the help of truth predicate one can express infinite
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conjunctions and disjunctions, but it can be shown that UTB, and there-
fore TB, TB| and UTBJ, cannot prove any infinite generalization. For these
reasons, one would aim to do better.

Typed compositional truth

Disquotational theories have the advantage of being very natural and not
arbitrary axiomatizations; in spite of this they provide no full validation to
another intuitive feature of the notion of truth: its compositional nature. For
example, an intuitively plausible logical principle concerning truth might be
the distributivity of truth over a logical connective. TB proves all instances
of these principles, but it cannot collect them into a general theorem valid
for all the sentences of Lpa.

These desirable principles are contained in the ‘inductive clauses’ em-
ployed by Tarski to define recursively the notion of truth of a formula in
a model. By turning them into axioms we obtain a theory of truth which
proves the sought generalizations and which is still natural: the theory CT,
for compositional truth.

Definition 1.4.3. The theory CT comprises all axioms of PAT and the
following axioms:

CT1) VsVt [T(Ts =t7) <3 5" =1t']
CT2) Vz [Sentpa(x) — (T'(7x) +» ~T'z)]

(T(zAy) <> T(z) NT(y))]
T

(

(CT2)

(CT3) VaVy [Sentpa(zAy) —

(CT4) vavy [Sentpa(zvy) — (T(xVy) < T(x) V T(y))]
(CT5) -

(CT6)

(

(
(
CT5) VaVy [Sentpa(z—y) = (T(z—y) < (T(z) = T(y)))]
CT6) Vovz [Sentpa(Yvr) — (T(Yoz) < VT (x[t/v]))]
CT7) Vovz [Sentpa(Jvz) — (T'(Jvz) » T (x]t/v]))]

Note that this system is typed as the quantifiers range over sentences
of Lpa, which are truth-free sentences. If Lp-sentences were included in the
axioms as well, the unrestricted Tarski-biconditionals would be derivable and
the system would be inconsistent. The system is compositional in the sense
that the truth of a sentence depends on the values of the constituents of that
sentence.

Hierarchical compositional truth

Both disquotational and compositional theories do not prove sentences which
contain a truth iteration, such as

TrT70=0"",
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as they are typed system based on the language £. Now, we can consider
PAT as base theory and add a new truth predicate whose domain ranges
over sentences of Lp. This predicate, in order to preserve the consistency,
has to be a new predicate T7;. The old predicate T is treated merely as a
predicate symbol of the base language £7'6. The process can be iterated by
adding at each step a new predicate up to the point that the truth predicates
can be indexed by natural numbers Ty, T1,T5,.... At this point, a further
theory of truth can be formed with another truth predicate T, and so on for
further ordinal numbers. This hierarchy can go up beyond transfinite levels,
the problem is that such a theory cannot be formalized because of problems
concerning the coding. A possible solution is to build a hierarchy along an
initial segment of natural numbers up to a halting point, the ordinal I'y!7.
The language extended with all the predicate {T;}i<r, can be coded and the
corresponding theory of truth formalized. I indicate the ordinals with Greek
letters and, if « is an ordinal, then & is the numeral of its code.

Definition 1.4.4. For an ordinal v < I'y the language L. is Lp4 expanded
by all truth predicates T for all 8 < 7; adding T, as well, the language £,
is obtained.

For any ordinal v smaller or equal to I'g a theory RT ., is defined. The
label stands for theory of ramified truth up to ~.

Definition 1.4.5. For a < I'y the theory RT, is given by all the axioms
of PA, induction axioms for L., and, for all v < 8 < a:

RT1) VsVt [Tg s =t <> s =t]

RT2) Vx [Sent.g(z) — (Tz(7x) <> ~Tax)]

(RT1)
(RT2)
(RT3) VaVy [Sent<p(zVy) — (Tp(zvy) <> Tp(z) vV T(y))]
(RT4)

RT4) Vavy [Sent<p(z—y) = (Ts(r=y) < (Ts(z) = Ts(y)))]

16Note that, generally speaking, if a new predicate P is added to the language of the
base theory in TB it is enough to add new instances of the disquotational schema, while
in CT a new axiom analogous to the axiom (CT1) must be added as well:

VH(T(P(1)) «> P(t)).

In this case, the theory CT is based on the language L7 U {71} and the predicate ‘added’
to the base theory is T, hence, the new axiom must be:

VH(TL(T(1)) > T(t)).
177, called Feferman-Schiitte ordinal, is a large countable ordinal, for its precise defini-
tion see Feferman [13]. It has an important role since is the smallest ordinal that cannot be

defined from smaller ordinals by using ‘predicative’ means. For this reason, it is commonly
considered the limit of predicativity.
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(RT5) Vuvz [Sent.g(Yvx) — (Ts(Yvx) <> VtIp(x[t/v]))]
(RT6) Vit [Senter (t") — (T3(T,t) <> Tyt")]
(RT7) VtVS < B [Sents5(t") — (Ts(Tst) <> Tpt’)]

The first six axioms are generalization of the axiom of CT: each truth
predicate T3 with 3 < + satisfies the Tarski’s inductive clauses. The axiom
(RT7) is a generalization of the axiom (CT1) that governs the truth of atomic
sentences'®. The last axiom is specific for a theory with more than one truth
predicate and expresses their cumulativity: the truth predicates T;, and T}
agree on sentences of the language L, if @ < B, therefore the higher truth
predicates include all the lower ones and the higher languages are richer than
the lower ones in the hierarchy.

Type-free disquotational truth

Anyway, as I have already said, typing is not the only solution, indeed strate-
gies 2*b. and 2*c. lead to type-free systems.

Let us came back to disquotational theories; if one drops the restriction
that truth only applies to sentences without the truth predicate, then one can
obtain very strong theories and prove many general principles. The problem
is that the result of releasing the restriction on TB is an inconsistent theory,
hence in order to obtain a type-free disquotational theory we have to find
other kind of restriction on the instances of the T-schema. In other words, we
need a criterion to exclude some (as little as possible) problematic instances
of the T-schema from the axioms of the theory. This can be done in several
ways.

The domain of T'—biconditionals that we are looking for must be natu-
ral and as larger as possible, thus one might adopt a maximality principle
adding as many disquotational sentences as is it consistently possible. Nev-
ertheless, McGee showed that there are 2% many sets I' of disquotational
sentences maximally consistent with TB, i.e. such that any set I' D T' of
disquotational sentences is inconsistent with TB. As consequence, we would
have uncountably many different theories. Unfortunately, the same applies
if one choose a criterion of maximal conservativity: there are 2% maximal
conservative extensions of TB. There is another way: we can try to under-
stand how to avoid the liar-like paradoxes. An essential feature of them is
the presence of a negated occurrence of the truth predicate. It has been
presented a type-free disquotational theory, which is based precisely on this
insight: we can avoid the paradox by banning instances of the disquotational
schema in which the truth predicate does not occur positively. A formula ¢
of L1 is said positive with respect to T if and only if T" occurs in ¢ in the
scope of an even number of negation symbols, if any.

8See the footnote 16 on the preceding page.
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Definition 1.4.6. The system PTB is the system PAT with, as axioms, all
sentences of the form T" ¢ <> ¢ where ¢ is a T-positive sentence of Lp.

The acronym PTB stands for positive T-biconditionals. Unproblematic
self-referential sentences, such as the truth teller sentences 7 := T'("77), are
all T-positive, hence sentences like T'("77) <+ 7 are axioms of PTB. In the
same way, the domain of uniform 7T-biconditionals can be expanded:

Definition 1.4.7. The theory PUTB comprises all axioms of PAT and all
sentences of the form

o

Vi, oot (T (L, t,) Ve Bty oo tn))

where ¢(x1, ..., x,) is a formula of the language of L1 with exactly z1,..., 2y,
free and in which T occurs only positively.

Type-free compositional truth

It is well-known that an axiom with an implicative form such as - A — B is
always stronger than the corresponding rule - A = B. For this reason one
may wonder whether by substituting T-schema with corresponding rules he
gets a consistent theory. More explicitly, the two directions of the schema
¢ —=T("¢") and T("¢") — ¢ can be replaced with the matching rules:

¢
(6
T(I—j_l) Conec

The label Nec stands for necessitation rule, for similarity with its modal
analogue; Conec stands for conecessitation rule.

In order to avoid the inconsistency is it enough to replace one direction of
the disquotational schema with the matching rule? The answer is negative,
the liar paradox can be strengthened as follow:

Theorem 1.4.1 (Montague’s theorem). Any system extending PA closed
under the rule Nec for all sentences of L7 and under the schema T'("¢™") — ¢
for all sentences ¢ of L1 is inconsistent.

Theorem 1.4.2 (Dual of Montague’s theorem). Any system that contains
PA and the schema ¢ — T'("¢") for all sentences ¢ of Lr is inconsistent with
the rule Conec.

However, there is a good news: Nec and Conec can be consistently com-
bined with one another, and also with many further axioms. If a truth theory
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is closed under these two rules, it is called symmetric and it can be proved
that the liar sentence is neither provable nor refutable in it.

Exploiting this chance a type-free generalization of CT is built, by drop-
ping the restriction on L-sentences and by postulating the commutativity
between truth and logical operator even for sentences which contain the
truth predicate and not just for arithmetical sentences. The resulting sys-
tem is called FS. The label stands for Friedman—Sheard, who fist presented
this theory in [21]. The following formulation is due to Halbach [28].

Definition 1.4.8. The system FS is given by all axioms of PAT, the following
axioms:

FS1) VsVt [TTs =t" ¢ 5" =t']
FS2) Vz [Sentr(z) — (T'(-x) «» —Tx)]
T(zny) < T(x) ANT(y))]

T(zvy) < T(x) VT(y))]
T(yox) < VIT (2[t/v]))]
T(Jvz) <> T (z]t/v]))]

(FS1)
(FS2)
(FS3) VaVy [Sentr(zAy) —
(FS4) VaVy [Sentr(zvy) —
(FS5) VoV [Sentr(Yvz) —
( —

(
(
(v
FS6) VuVa [Senty(Jvx

and the following inference rules: for each sentence ¢ of Lr:

¢
T
T(;:ﬂ Conec

FS has of course desirable properties, but the most relevant result con-
cerning FS is the fact that it is w-inconsistent.

Definition 1.4.9. A theory S is w-inconsistent if and only if there is a
formula ¢(z) such that S F ¢(n) for every n € w and S F =Vzo(z).

The inconsistency of FS is an application of a negative result due to
McGee:

Theorem 1.4.3 (McGee’s theorem). Any theory S containing all the axioms
of PA that is closed under NEC and proves the following sentences is w-
inconsistent:

(i) Vz(Sentr(z) = (T'(—z) <» —Tx));
(i) VaVy(Sentr(zvy) — (T(xvy) < T(x) V T(y));
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(iii) VoVz(Senty(Yvz) — (T'(Yox) <> VT (x[t/v])).

I would like just mention the existence of an interesting debate about how
dire is for a truth theory to be w-inconsistent, there is no agreement about
this. At any rate, FS turns out to have an interesting semantic, especially
if subsystems of FS with a limited number of application are considered (FS

n)19.

1.4.3 Restriction of logic

In order to avoid paradoxes another way out can be taken. This is based
on the condition 3., namely the fact that ordinary reasoning is requested
for deriving the paradox. A possible solution is to change somehow the
underlying logic by revising logical axioms and rules. Classical logic is also
characterized by the fact that every property is consistent and complete with
respect to the domain. Formally, given an universe of discourse M and a
property X on M, let X be the complement of X with respect of the domain.
We have:

Consistency of X: X N X = 0, a set and its complement are mutually
exclusive.

Completeness of X: X UX = M, a set and its complement exhaust the
domain.

These conditions for the predicate ‘is true’ are expressed by the so-called
Consistency and Completeness axioms:

Cons:  Vz[Sentp(x) — =(Txz A T—x)] No sentence is both true and false.
Comp:  Vz[Sentp(z) — (T'z V T—zx)] Every sentence is either true or false.

In can be proved that Cons is incompatible with the schema ¢ — T" ¢
for all sentences of Lpa and, dually, Comp cannot be added to a system which
proves T" ¢ — ¢. The logic of truth must be changed and, typically, there
are two strategies:

3*a. Cons is maintained and Comp dropped : T becomes a partial predicate,
truth-value gaps are allowed, that is there are sentences neither truth
nor false.

3*b. Comp is maintained and Cons dropped: truth-value gluts are admitted,
that is there are sentences both truth and false.

19Gee Halbach [28] for further details.
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Partial truth

The first suggestion in this direction, due to Kripke, is to employ three-value
logic?. Kripke’s theory is a semantic one: he provided a partial model for
the language L, by extending a standard model of Lpa with a suitable
interpretation for a type-free truth predicate. T is partially defined, that is
its interpretation is given by two sets: the extension and the antiextension
of the truth predicate, such that a sentence is true (is false) if and only if its
code is in the extension (in the antiextension) of the truth predicate.

Since I shall comprehensively explain Kripke’s construction in section
3.1.4, now I just want to tell how the Liar is avoided. In classical models the
antiextension of a property coincides with the complement of the extension
with respect to the domain — in our case, the set of all sentences. So,
in Tarskian models for L, a given sentence either holds or its negation
holds. In partial models this does not happen: the union of extension and
antiextension does not exhaust the domain (the set of sentences of Lr),
accordingly there are sentences that do not belong to any of the two sets,
i.e. sentence neither true nor false. Kripke’s model is built in order to ensure
that the fate of paradoxical sentences is to fall in this gap?!. In this way
inconsistencies are avoided.

Kripke did not provide an axiomatization of his theory, Feferman in [16]
gave an axiomatic formalization of it which has been later called KF, for
Kripke-Feferman. Usually in KF formulations a further primitive predicate
for falsity is used, defined by the sentence:

Ve (Fz < Tox),

of course x ranges over numerals of godelian of sentences. So, falsity for a
sentence is defined as the truth of its negation.

Definition 1.4.10. The system KF is given by all axioms of PAT and the
following axioms:

KF1) VsVt [TTs=t" ¢ 5" =t | AVsVt [FTs=tT ¢ 5" #1°]
KF2) Vt [T(Tt) <> Tt ] AVt [F(Tt) < (T—t)]

(KF1)

(KF2) v

(KF3) Va [Sentp(x) — (T(-—x) +» Tx)]

(KF4) Vavy [Sentr(wvy) — (T(avy) < T(x) v T(y))]
(KF5)
(KF6)

(
KF5) VaVy [Sentr(zVy) — (F(xVy) <> F(x) A F(y))]
KF6) VoVz [Sentr(Yox) — (T'(Yvx) «> VET (x[t/v]))]

20See Kripke [32].
2IThere is also an alternative solution: the overlapping of the two sets.
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(KF7) YoV [Sentr(Yvx) — (F(Yvx) «» ItF (z[t/v]))]

It is worth noting that axiom (KF2) is incompatible with the second axiom
of FS:
Vz(Sentr(z) — (T'(7x) < —T'z)),

a formula which states the equivalence between the claim that a sentence is
not true and the claim that the sentence’s negation is true. This means that
in systems like KF being not true or being false are different properties.

It can be also proved that (FS2) is logically equivalent to the conjunction
of Cons and Comp taken in the following versions:

Cons:  Vz(Sentr(x) — (T'~x — —Tx))
Comp:  Vz(Sentr(x) — (—=Tx — T—x))

So adding both of them to KF leads to contradiction. Nevertheless either of
them can be added preserving consistency and Lpa-conservativity?2. More-
over, resulting systems KF + Cons and KF 4+ Comp are equivalent for their
arithmetical content.

Dialethic truth

Excluding gaps and admitting only gluts leads to a conceptions which is
usually called dialethic truth. In these theories there are sentences, typically
the Liar, that are both true and false against Cons. I shall not deal with this
kind of approach, but see Field [19].

1.5 Adequacy criteria

In short, in setting up a theory of truth one has to avoid liar-like contra-
dictions and, at the meantime, to do justice to the several facets typical of
the notion of truth as it is used by speakers, features which are partially
embodied by condition 1.-3. . But not all of them can be satisfied at the
same time, so we are led to loosen in some way them. The problem we find
ourselves to face is: how far could we go from the original requirements?

I am going to deal again with the issue of naturalness, but first let us
provide further materials for our discussion by seeing other criteria to test
proposed solutions, as far as consistency is just a minimal criterion for the-
ories of truth. Leitgeb, in a paper meaningfully entitled What theories of
truth should be like (but cannot be)?3, isolates eight adequacy criteria that
truth theories should meet but at the same time they cannot fully meet as
otherwise they would be inconsistent.

?2See Cantini [7].
21 eitgeb [33]
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(a)

Truth should be expressed by a predicate (and a theory of syntax
should be available).

I have already justified this kind of approach and, actually, all standard
theories of truth meet this criterion.

If a theory of truth is added to mathematical or empirical theories, it
should be possible to prove the latter true.

Suppose a theory of truth T is built by adding truth predicate and
truth axioms to a base theory B. Theorems of B are of course proved
in the combination of the two theories, but this is not enough. Since
a predicate for truth is available, doubtless it would be strange if the-
orems of B could not be proved true.

The truth predicate should not be subject to any type restrictions.
By saying this Leitgeb understands that kind of restriction we have
shown in route 1*., that is a type-limitation for the formulae allowed
to fall in the scope of T

T-biconditionals should be derivable unrestrictedly.

As Tarski suggested, checking whether all T-biconditionals for the lan-
guage of the truth theory are derivable in the theory itself is a secure
criterion to test how far we are from a ‘good’ truth definition.

Truth should be compositional.

Generally speaking, compositionality for truth is a phenomenon that
can be described as follows: whether or not a complex sentence is true
should be determined just by whether or not its constituent sentences
are true and by its logical structure. This seems very natural for truth
up to the point that Tarski inductively defined the truth of a complex
sentence in terms of the truth of its logical parts (this view is embodied
in the system CT).

The theory should allow for standard interpretations.

An interpretation of the linguistic expressions of the truth theory should
be fixed. According to the criterion (a), truth is a predicate which ap-
plies to singular terms. The intended interpretation for those syntactic
objects is the most natural one: singular terms are intended to refer
to sentences and the truth predicate to express the property ‘to be
true’. In more logical terms, theories of truth not only should have
a model (of course they should since they should be consistent), but
they should also have a standard model.

The outer logic and the inner logic should coincide.

For a theory of truth T we distinguish inner (or internal) logic, the
set of sentences that are provably true, i.e. all ¢ such that T+ T ¢"
and outer (or external) logic, the set of sentences that are provable,
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that is such that T - ¢. In certain systems they coincide, but there
are theories in which they do not. For example, the outer logic of KF
is classical, while its inner logic is strong Kleene 3-valued logic. This
criterion, being an extension of (b) for the whole language, seems very
plain as well. Moreover, note that it is entailed by (d).

(h) The outer logic should be classical.
Leitgeb argues that to keep classical logic unchanged and to add a
sophisticated axiom system is better then deviating from classical logic
and adding a more natural truth system.

How far can we go in forcing those desiderata? It is necessary to un-
derstand where to place the balance between the chance offered by formal
systems of making arbitrary choices and the necessity of maintaining the
naturalness of the theory.

I argue that in order to answer this question one has to clarify his ap-
proach toward truth theories. Such systems in fact have a sort of intrinsic
bivalence as an identifying trait: they arise as objects of a purely philo-
sophical interest but they also turn out to be powerful tools in the field of
mathematics and philosophy of mathematics. In both cases ‘artificialness’
should be viewed as a chance, but (a)—(h), being philosophical requirements,
are more or less compelling according to the adopted approach. In both
cases, | believe (a)—(c) must be taken for granted.

If one is mainly interesting in features of the base theory and less in
properties of the notion of truth, then few other criteria besides (a)—(c), or
maybe none of them, are binding.

From a philosophical point of view, the abandonment of the natural
language opens new paths: to work in a context where there is nor mis-
understanding nor ambiguities, where the language can be microscopically
analysed in all its parts is a kind of research which provides useful contri-
butions to the philosophical debate. It is also the most fruitful strategy for
testing ideas by bringing them to the extreme possibility and by analysing
the consequences. So, the advantage of reasoning in formal terms must be
exploited up to the limit: no restrictions should be a priori viewed as unac-
ceptable or problematic, in the spirit of the Carnapian saying according to
which there are no morals in logic. Nevertheless, one should eventually come
back to philosophy again and in order to do so one should try to maintain
the intended interpretation: the possibility of going back must be kept open
in order to be able to ‘read’ the results. That is why the point (f) seems in-
dispensable as well and, in my opinion, this might be a not overly restrictive
manner to interpret the request of naturalness for truth theories.

Although formalized languages (as PA) and classical logic are far from
ordinary natural language and reasoning (there is a significant loss of com-
plexity in moving from one to another!), a basic similarity does remain and
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it might represent a kind of anchor for the theory; hence to give up (h) is
rather problematic. So I tend to localize the arbitrariness in the choice of the
basic principles: choosing a list of axioms is already perceived as arbitrary
per se up to the point that to advocate restrictions in the name of natu-
ralness seems no more justifiable. That is why, I argue that among those
criteria (d) and (e) are the less compelling. I believe that it is precisely this
combination of similarity and distance from natural language that makes the
world of axiomatic theories of truth so attractive: they are both formal tools
that allows one to do manipulations, check results, etc. and, at the same
time, they are theories in which the philosophical interpretation remains in
the background but it is always ‘available’.

At any rate, criteria (a)—(h), just as conditions 1.-3., are not independent
of each other: more often than not, to drop or modify one of them has
repercussions also to the others.
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Chapter 2

Comparing axiomatic theories
of truth

Truth theories in their classical presentations are well-delimited formal sys-
tems, within which many different and interesting studies can be carried out.
But another kind of investigation is attractive as well: a metatheoretical and,
at the same time, inter-theoretical one. It consists in placing ourselves out-
side of the theory and looking at it from a distance. The aim is to focus
on its placement with respect to other theories (non only theories of truth)
in order to pick out bounds, power and other feature of the theory itself.
Facing this topic the main problem is to compare truth theories with other
theories and this necessarily involves the broad theme of reducibility.

The aim of this chapter is to investigate what happens when truth, ax-
iomatized by certain theories, is subjected to reductions. The starting point
will be a reflection on the notion of reduction between theories, in order to
isolate aims and tools. Then I shall focus on truth theories and in this re-
spect I shall argue that axiomatic theories of truth reveal a peculiarity with
respect to the problem of reducibility. Indeed they lend themselves well to
a metatheoretical investigation. Moreover, I believe that this large family
of theories might be a interesting ground for the study of the fruitful and
philosophically relevant problem of reduction.

A remark of purely terminological character: I use indifferently the words
‘theory’ and ‘formal system’. Clearly there is an abuse here as far as a formal
system is a collection of axioms and rules for generating theorems whereas a
theory is a set of formulae closed under logical consequence. So, although a
theory might be generated by different formal system, in many cases I shall
not distinguish between theories and formal systems.
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2.1 On reduction

The analysis of the concept of reduction between theories is a broad field,
characterized by a jungle of opinions and a fragmented and unsystematic
literature. I shall try to untangle this maze by using as guidelines some
distinctions that will allow us to orient ourselves. A remark before starting:
these distinctions should not be seen as branches stemming from a common
root such that better and better define certain classes, it is rather a complex
network of similarities and overlapping inclusions.

Reduction in Natural Sciences VS Reduction in Abstract Sciences.
I The problem of reduction between scientific theories is a widely dealt
issue in philosophy of science. It is also very controversial: there is no
agreement among philosophers on what is the meaning to be attributed
to a reduction in this field, mainly because it involves both problem-
atic concepts as explanation, prediction, approximation and ontological
claims. Anyhow, I try to give a very loose (and maybe rough) char-
acterization focusing my attention on purposes, without dealing with
the problem of isolating formal conditions and essential features for
reduction. Philosophers have differed in what they regard as necessary
for something to be a reduction and throughout the twentieth century
three models of theoretical reduction have been isolated: the transla-
tion model, the derivation model, and the explanation model?. Apart
from the chosen model, generally, reduction projects in this context
have an ezplanatory purpose: when you reduce one theory to another
it is required that the descriptions of phenomena and the predictions of
the reduced theory are somehow subsumed by those of the latter. With
regard to the first model, I consider the positivist idea that through
reduction the subjective methods of social sciences should be replaced
with objective methods of physical sciences explanatory and not foun-
dational as well: by reducing one theory to another one seeks inter-
subjectively understandable explanations and predictions, not a sort
of justification for the reduced theory. But things still remain compli-
cated since there are different models or frameworks for inter-theoretic
explanation?.

LOf course, this requires a distinction between natural sciences and abstract sciences
over which I do not linger, let me take the terms in their intuitive meaning: among natural
sciences I include biology, physics, chemistry and so on as distinguished from the abstract
or theoretical sciences, as mathematics or philosophy.

Historically, the translation model is associated with the early logical positivists Car-
nap and Neurath, the derivation model with the later logical empiricists Carl Hempel and
Ernest Nagel, and the explanation model with John Kemeny and Paul Oppenheim. In
the contemporary debate some criticisms and refinements have been made with respect
to the original formulations.

3For this issue a landmark in literature is the book The Structure of Science: Problems
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In abstract sciences things change: there are of course problems of
explanation, but in this field the purpose of reductions is mainly foun-
dational, to the extent that by reducing one theory we try to bring
back it to a more justified one or more primitive system. In abstract
sciences the philosophical need of justify a theory becomes crucial: the
comparison with phenomena, which is usually a discriminating factor,
is missing. So, the intent is to isolate a system that is, for whatever
reason, more fundamental than another (not needing justification) and
the reduction of another theory to that system somehow justifies the
former?. At any rate, philosophical relevance of reduction is not sim-
ply identified with foundational importance: we shall see that for truth
theories the aim, although can be to some extent considered philosoph-
ical as well, is not foundational.

Global Reduction VS Local Reduction. ° This distinction is ‘transver-
sal’ with respect to the previous one: in both natural sciences and
mathematics we found local projects of reduction opposing to global
programs. In natural science global reductionism is the attempt to
build the so-called Theory of Everything, an unified system that col-
lects together different phenomena such as waves, elementary particles,
multicellular organism up to social groups®.

A program of this kind is anything but undisputed; indeed it causes
skepticism and is subjected to criticisms: antireductionists abandon
the idea that various sciences (physics, astronomy, chemistry, biology)
can be unified into a single overarching theory and merely pursue local
projects of reduction.

In mathematics the contrast between global and local reduction has
an historical development: in the late nineteenth and early twentieth
century, reductio ad unum programs arose in foundations of mathe-
matics; then, as it is usually said, Gdédel limiting results undermined
the overall plant and, accordingly, global reductionism was abandoned
in favour of local projects of reduction. Let us further delve the issue
without going into the details, trying to focus on reduction. Founda-
tional programs such as logicism, intuitionism and formalism share the
belief that mathematics can be brought back to simple contents, (ab-
stract entities which may be captured logically, mental acts or finitistic
portion of mathematics). This is a reductionist perspective, and it is

in the Logic of Scientific Explanation by Ernest Nagel (1961). For a survey of the problem
of reduction in physics see [2].

4See the next distinction for a deeper discussion about this topic.

>This distinction has been used by Feferman in order to introduce his proposal, see
Feferman [17].

SFor a historical survey and a discussion of the contemporary key issues of scientific
reductionism see [9].
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global for the aim is not to reduce one system to another but to reduce
the whole mathematics to something intuitively justified.

In the early twentieth century these foundational programs ran into
several difficulties (foundational crisis of mathematics); for our pur-
poses it is enough to concentrate on results which mark the break-
down of global projects of reduction. The watershed is represented by
Godel’s theorems: during the thirties, Gdédel proved the incomplete-
ness of formal systems containing a (quite limited) portion of arith-
metic. The second incompleteness theorem states the unprovability of
the consistency of a (reasonably powerful and recursively axiomatized)
mathematical theory within the theory itself”. This maybe is the more
harmful result for foundational programs & la Hilbert. At any rate is
not my intention to address the interesting debate about the impact of
Godel’s theorems on Hilbert’s program, but, for sure, incompleteness
theorems determine the need to go outside the boundaries of the formal
system itself: the project to reduce all mathematics to a small subpart
cannot be achieve. Nevertheless, although Hilbert’s solution for foun-
dation of mathematics seemed to be no more defensible in its original
formulation, Hilbert’s program has not been completely abandoned:
it was somehow resumed by Gentzen with the consistency proof of
arithmetic®, Kreisel and his modified Hilbert’s programme® and lastly,
by Feferman who promoted a relativized form of Hilbert’s program'°.
Of course, the monistic view typical of global reductionism has been
dropped in favour of an alternative approach with a local character.
Local projects of reduction simply consist in reducing somehow a signif-
icant formal system to another rather than all formal systems to a sin-
gle one. In other words, rather than isolating a system (or subsystem)
that would serve as ‘foundation’ for the entire ‘mathematical building’,
one wonders what rests on what in the spirit of the Feferman’s works.
However, this local perspective does not mark the abandonment of the
foundational intent!'. I refer to the cited sources for further reading
on this topic, since my survey is primarily concerned with reduction.
Feferman describes the new general pattern of foundation as follows:

A body of mathematics 9 is represented in a formal sys-
tem T; which is justified by a foundational or conceptual
framework Fi. T; is reduced proof-theoretically to a sys-
tem To which is justified by another, more elementary such

"For a comprehensive explanation see Boolos and Jeffrey [4], chapters 17 and 18.
8Cfr. Gentzen [23].

9G. Kreisel, Hilbert’s programme, «Dialectica» 12, (1958).

19See mainly Feferman [15].

"For a survey on different foundational ways see Feferman [?], particularly pp 10-13.
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framework Fy12.

This kind of reduction is, according to Feferman, still foundational but
partial, for Tq is just a part of what can be justified by /7. Hence, the
role of reductive proof theory becomes predominant.

Theory Reduction VS Ontological Reduction. Theory reduction is a
inter-theoretic relation that holds between theories when one of them
is somehow contained in the other one. There are many nonequiva-
lent definition of “theory S is reducible to theory T”. As Niebergall'®
pointed out, they differ from each other to such high degree that only
some triviality, like the arity of the relation, will remain. In the next
section I am going to talk about the three best known notion of reduc-
tion between formal systems: proof-theoretic reduction, relative inter-
pretation, and translation. Whether these notions can be considered

reduction in a strict sense is matter of discussion?.

Whereas theory (or theoretical) reductions are reductions between the-
ories, the notion of ontological reduction is used to talk about a rela-
tion between phenomena or entities. Ontological reductions are seen
as ways to unify and simplify our ontology, against needless multipli-
cation of entities. We can further distinguish between a stronger claim
about ontological reduction and a weaker claim. In the first case there
is a genuinely ontological attitude towards the existence of the objects
involved: objects which are to be reduced are already presupposed as
really existent. The question, then, is what does it happen to those
entities after an ontological reduction? Are they eliminated or just
identified with the reducing ones? Both options seem hard to be main-
tained especially if one talks about abstract objects such as numbers
or sets. On the one hand, there is multiplication of entities as well:
even though the objects are reduced, in the sense of identified, how-
ever, their existence would be asserted and so the pursued parsimony
would be not achieved. On the other hand, how can the effect of a
reduction eliminate objects that were previously seen as existent? But
there is also a weaker claim according to which what really happens
in a reduction between theories is that certain assumptions (axioms or
theorems) of the former can be carried out in the language of the lat-
ter; so, in a slightly paradoxical way, ontological reduction is a purely
syntactical claim.

Homogeneous Reduction VS Inhomogeneous Reduction. This distinc-
tion, suggested by Nagel!®, belongs to the field of natural science, but it

12Cfr. Feferman [17], p. 73.

13Cfr. Niebergall [35], p.27

“Hofweber in [30] maintains a polemical position with respect to this claim.
5For a taxonomy of inter-theoretical relations see also Sklar [43].

33



can also be adapted to our purposes. Reductions are distinct depend-
ing on whether theories involved share the same conceptual apparatus
or not. The first obstacle to clarify is: what do we understand by say-
ing ‘concept’? Without committing myself with philosophical claims
about the ontological status of concepts, their internal structure or
their relationship with language, I just regard as conceptual appara-
tus the non-logical symbols of the language. Therefore, although I
am aware of committing an abuse, with concepts of a certain theory
we understand its descriptive apparatus. Moreover, I take descriptive
symbols (predicates and individual constants) of the theory language
in their formal purely syntactical presentation, without considering the
possible interpretations. After this clarification, let us outline the dis-
tinction.

Two theories are said homogeneous if they share the same conceptual
apparatus, so the homogeneous reduction is a reduction in which the
concepts of the reduced theory are a subset of those of the reducing
theory.

Conversely, when the reduced theory contains some concepts not present
in the reducing one we have an inhomogeneous reduction. In this case
the problem of reduction gets more complicated, for it involves onto-
logical issues.

Before dealing with some open issues concerning reduction, I shall focus
on theory reduction and introduce different reductive techniques.

2.2 Notions of reduction between formal systems

I am going to talk about three notions of reduction between formal systems,
known in metamathematical literature as proof-theoretic reduction, relative
interpretation and translation. A preliminary remark is required in order to
avoid ambiguity: whatever relation between theories can be considered as
proof-theoretical reduction because it is investigated by using means with a
proof-theoretical character. In this sense even relative interpretability is just
one special form of proof-theoretical reducibility. I shall use this notion in
its strictest sense to be clarified by a definition. This leads to two definitions
of reduction which are distinct to such an extent that a system S can be
proof-theoretically reducible to T without being relatively interpretable in
it, and wvice versa. In what follows, the theory to be reduced will always be
referred to as the source theory (S). The theory to which one is attempting
to reduce the source theory will be known as the target theory (T).

Finally, a remark of a purely notational character: considering two the-
ories S and T, if Lg and L1 are their language respectively, then I write
Ls N L1 to express the common part of them and Lg U L1 for their union.
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2.2.1 Proof-theoretic reduction

For simplicity, all formal systems considered are assumed to be primitive re-
cursively axiomatized and ‘enough powerful’, namely they contain a portion
of arithmetic (at least the system I¥1). We deal with primitive recursive rep-
resentations of their proof predicate and provability predicate. Given S, we
write Proofs(y, x) to express that y codes a proof in S of the formula coded
by z, and Bews(x) for Jy(Proofs(y,x)). Furthermore, since proofs can be
considered as finite sequences (or trees) of formulae, if p is (the code of) a
proof then End(p) is the end-formula of p. For the sentence ~Bews("0 = 17),
namely the consistency of S, we write Conss.

The idea of proof theoretic reduction of a theory S to another theory T
is that we have an effective method, i.e. a primitive recursive function f,
for transforming proofs in S of formulae of a set ® into proofs in T of the
same formulae and this is established in a third system W, which has to be
included in T.

Definition 2.2.1. Let S, T be theories as stated and p a proof in S. Let,
moreover, ® be any primitive recursive class of formulae contained in LgN Lt
and defined by the formula ®(x).

S is proof-theoretically reducible to T conservatively for ®, provably in W,
S < T[®]( in W), if there exists a primitive recursive f: Proofs — Proofr
satisfying:

(i) for each p, ¢, if Proofs(p, ¢) and ¢ € ® then Prooft(f(p), ¢),
(ii) W Va,y(Proofs(y,x) A ®(x) — Prooft(f(y),x)).

In other words, it is not enough to have an effective map f from proofs in S
to proofs in T: it is also essential for the notion of proof-theoretic reduction
that this is provable by some restricted means, namely at least in the target
theory itself or, even better, in a weaker system such as Primitive Recursive
Arithmetic PRA, or I¥;. In general, the cases considered are W = I¥; and
W = T and the matching reducibility relation is said uniform or non uniform,
respectively. When W = T we say just S is proof-theoretically reducible to T
for ®. The more significant are restrictions on the instruments used to carry
out a reduction, the more the reduction itself will be meaningful. That is
why, in general, the uniform notions are weaker than the uniform ones.

Let us define another inter-theoretic relation which will be very useful
for our discussion:

Definition 2.2.2. A theory S is conservative over T for ® if all formulae ¢
of ® which are provable as theorems in S are also theorems of T.

S is a conservative extension of T for ® if, in addition, S is an extension
of T.
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The requirement (i) of the definition 2.2.1, once it is assumed as hypotheses,
is enough to state the conservativity of S over T for formulae in ®, i.e.

peDandSko=TFk 6. (2.1)

That is because if S is proof-theoretically reducible to T with respect to
a certain class of formulae, then S does not prove anything about those
formulae over and above what T proves (and, moreover T knows this). That
is, S is conservative over T with respect to a certain class of formulae. The
converse would be true if (2.1) is provable in the target theory. Furthermore,
if the class ® contains the equation 0 = 1 as well, and typically this is the
case, then (2.1) yields:

T consistent = S consistent.

And under the further hypotheses that (ii) holds, we have that in W the
relative consistency between S and T is proved. Formally:

Definition 2.2.3. S <pc T(in W), in words: S is relatively consistent to
T, provably in W if
W I Const — Conss.

Again, if W = ¥, this relation is said uniform, and non uniform if W ="1T.

Concluding this brief review, it might be interesting to see the model-
theoretic counterparts of the notions defined:

Definition 2.2.4. S is model-theoretically reducible to T conservatively for
@, (S T[P]) if there exists a function f: Mod(T) — Mod(S) such that:

(i) VMM ET = f(M) =5),
(ii) YMY$ € (f(M) F ¢ = M |=¢).

Definition 2.2.5. A theory S is semantically conservative over T if every
model of T can be expanded to a model of S.

Model-theoretic reduction implies conservativeness as well, but it is impor-
tant to point out that the syntactical conservativity and the semantical one
do not always agree.

2.2.2 Relative interpretation

For the first time the precise notion of relative interpretability has been
defined by Tarski. In [48], he employed this kind of notion as an indirect
method to establish whether a formalized theory is decidable or not, by
reducing it to another theory for which the decision problem has already
been solved.
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Intuitively, S is relatively interpretable in T if for each relation, function
and constant symbol of the language Ls of S there is a possible definition of
it in L. Then, with each formula of Ls it is associated as its interpretation
in L1 a formula obtained by substituting the respective definitions for non-
logical symbols and by relativizing all quantifiers. Before giving a more
technical definition, we have to answer some questions like: what is a possible
definition of a given symbol in a theory to which it does not belong? What
does the relativization of quantifiers mean and why is it important?

A possible definition for a predicate P with arity n of Lg in the language
of T is a formula of the following form:

VI (P(T) < ¢(T)), (2.2)

where ¢(x1,...,2,) is a formula in the language L1, containing no more
than n free variables. The sentence (2.2) is not a sentence of L, as the
symbol P™ does not belong to L1; but it is a sentence in every extension of
T containing the predicate symbol P™. The same happens for all predicative
constant in Lg. We consider the identity predicate, =, as a logical symbol,
so it is always translated by itself.

A possible definition of an n-ary function symbol in T is:

VEVY(F(T) =y < o(T,y)). (2.3)

where ¢(@,y) is a formula of T with exactly the variables z1, . .., &,y free.
Moreover, this formula cannot be arbitrary: it must be functional and, so,
T must prove:

VIVOYu(d(Z,u) A d(Z,v) = u=v).

However, we can assume for simplification that our theories are formulated
in a purely relational language, i.e. a language which contains only relation
signs.

Individual constants are treated as O-place function symbols. Thus, if ¢
is a constant of S, its definition in Lt is:

Yy(c =y < ¢(y))

with ¢(x) formula of L1 and such as in T is provable the following sentence:
Yuvv(d(u) A ¢(v) <> u = v).

In order to relativize the quantifier we take a symbol § not in the lan-
guage of the source theory S and then we substitute all subformulae Vi) (z)
and 3z (z) in formulae of S with Vz(d(z) — ¥(z)) and Jz(6(x) A(z)), re-
spectively. Generally 0(z) is a formula of the target theory T, which provides
a defined range of variation for the variables of Ls.

Let us see with an example taken from Niebergall [35], why this operation
is fundamental. Consider the reduction of the Peano Arithmetic (PA) to
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Zermelo-Fraenkel set theory (ZF). We have possible definitions, like 0 := ()
and s(x) := xU{z}, for the constants and functions of PA. But if we translate
a sentence of Lpa which is provable in PA into a sentence of Lz, simply
interchanging definiens and definiendum, we obtain a sentence which is not
provable in ZF:

PAF Va(z # 0 — Jy(z = s(y))), (2.4a)
ZF FVz(x £ 0 — Jy(z =y U {y})). (2.4b)

Reducing PA to ZF, we want to translate whatever is PA-provable about PA-
objects into something ZF-provable about the matching ZF-objects. In (2.4a)
variables range over the natural numbers, while in (2.4b) over arbitrary sets,
including the first infinite ordinal w which is different from the empty set
but not a successor ordinal. So, a real correspondence between PA- and ZF-
objects must associate all natural numbers not with all sets, but only with
all finite ordinals. Therefore, an adequate set-theoretical version of (2.4a) is
provided by restricting in (2.4b) the quantifiers to w:

ZFFVr € w(r # 0 — Jy(x =y U {y})),

where € w stands for the formula in L£zf expressing that = is a finite
ordinal.

After these explanations, we can give a formal definition of the notion of
relative interpretability, following Feferman'®:
Definition 2.2.6. Let S, T be theories in finite relational languages L£g and
Lt. Assume that for each k-place relation sign R in Lg there is a possible
definition ¢pr in L7. And let é be a fixed 1-place formula in Lt different
from all the ¢g.

L is a relative interpretation of S in T with respect to ¢ if and only if:

(i) ¢: Ls — Lt is primitive recursive,

)
(ii) for all n, m; t(xy, = Tm) = (Tn, = Tm),
(iii) for each k-place relation sign Rin Ls; t(R(z1, ..., x)) = pr(T1, ..., Tk),
)

(iv) for all formulae y, ¥ in Ls;

Y6Cfr. Feferman [11], p. 49. This definition describes the same relation introduced by
Tarski in [48].
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(v) for all formulae ¢ in Lg and all variables z:
(Vap(z)) = Va(d(x) = ¢ (x)),

(vi) TF Jzdé(x),
(vii) for all formulae (sentences) ¢ in Ls, if SF v, then T F ¢(¢).

S is relatively interpretable in T (S < T) if and only if there are a function
¢t and a formula § such that ¢ is a relative interpretation of S in T with respect
to 4.

There is, as important variant of this definition, the interpretability sim-
pliciter of S in T, i.e. interpretability where the relativizing formula 0 is
universally valid in T. An interpretability of this kind is equivalent to S
being a subtheory of a definitional extension of T, i.e. a theory obtained by
the addition of explicit definitions of the non-logical symbols of Ls. As other
variant we can imagine an interpretation for which condition (vii) is valid
also in the reverse direction. Specifying these intuitive notions of restricted
forms of interpretation, we obtain the following:

Definition 2.2.7. Let S, T be theories in L5 and Lt and ¢ a relative inter-
pretation of S'in T w.r.t. §:

¢ is unrestricted iff 0(x) = x.

v is faithful iff T o(v) = Sk .

As well as for proof-theoretic reducibility, even for relative interpretabil-
ity there is a semantical counterpart. Actually, there are many different
model-theoretic definitions of reducibility which are equivalent to relative
interpretability, for example the following:

Definition 2.2.8. S is (semantically) interpretable in T if there is a function
¢ from Lg to L1 commuting with connectives and quantifier (which may have
to be relativized) such that

VAETIBESY € L1(B =¥ < A o).

Relative interpretation satisfies certain intuitions which can be used, as
Niebergall suggested, as adequacy conditions. For example, an adequate
notion of reducibility should subsume the subtheory relation and, at the same
time, should be wider than it. Another property which might be desirable
to hold is transitivity. For both the requests, this is the case:

Remark 2.2.1. If R, S and T are axiomatic systems:

(i) S € T implies S < T but in general the opposite direction does not
hold,
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(ii)) f R<Sand S < T, then R<T.

Interpretability is also an important tool in proofs of (relative) consis-
tency and decidability. As Visser!” remarked, interpretations have some very
useful preservation properties.

Consistency. Interpretability preserves consistency from target theory to
interpreted theory and inconsistency in the reverse direction.

Reflexivity. Mutual interpretability preserves reflexivity.

Decidability. Interpretability preserves essential undecidability from inter-
preted theory to interpreting theory. Faithful interpretability preserves
decidability in the same direction.

Definition 2.2.9. A consistent theory is said to be essentially undecidable
if it has the property that every consistent extension is undecidable.
2.2.3 Translation

There are different definitions of what constitutes a translation; but the
minimal assumptions that a function f has to met in order to be a translation
are, as relative interpretation:

(i) f: Ls — L is primitive recursive,
(i) if St ¢, then T+ f(¢),
(iii) f preserves propositional operations'®.

Therefore we define:

Definition 2.2.10. S < T holds in the sense of translation, if there is a
function f satisfying (i), (ii), (iii).

Just as for relative interpretation, we have:
S <TAT consistent = S consistent.

However, we are going to compare theories which share their base theory
and differ only in the truth axioms. For this reason, in order to define
translation functions between two truth theories S and T it will be enough

Y7Cfr. Visser [49], p. 5.
8 Note that this assumption can be further restricted:

(1ii") f(=p) =~ f(p).
In this way, the definition of translation is more general since it can be applied to cases
in which the two theories are formulated in different logical systems (for example if the

logic of S is classical and that of T is intuitionistic). For our purposes, this generalization
is not required because we shall deal just with systems formulated in classical logic.
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to show whether the former can translate the truth predicate of the latter. As
we shall see, in doing this we shall use the recursion theorem. This theorem
guarantees the existence of functions built by recursion. Why do we need a
recursive definition of the translation? Suppose that a translation substitutes
a truth predicate T" with another formula 6; this function should substitute
all occurrences of T', even the ones in which 7" is just mentioned for example
in the formula 7T'(T't) both of the occurrences of T' should be substituted. To
this aim, in general, if f is our translation function substituting 7" with 6,
then for any term s the translation f(7'(s)) should be 0(f(s)) and not merely
0(s), where f is the formula representing f in the language of arithmetic.
Therefore the translation function f is recursively defined in terms of f itself
and f. The existence of such a function is guaranteed by the recursion
theorem.

2.3 Open issues about reduction

Investigating formal systems we are concerned in finding out their proof-
theoretical strength, expressive power and ontological commitments. More-
over, we would like to prove other properties of systems such as decidability,
consistency and so on. Reductions and, in general, intertheoretic relations
are an essential tool for these purposes.

In the previous section we have seen different candidates for a general
explanation of “theory S is reducible to theory T”. The further step is to out-
line adequacy criteria for suggested explications of ‘reducibility’. Niebergall
in [35] tried to trace some conditions. First of all a non trivialization of the
relation is required, that is to say not every theory should be reducible to
every theory'®. Moreover, reducibility should be a proper weakening of the
subtheory relation: if S is subtheory of T, then S should be reducible to T,
but the reverse, in general, should not hold. Having said this, a reducibility
relation p must meet the following:

1. SCT=SpT.
2. SpT and TpR = SpR.
3. If SpT then Const = Conss.

4. Let A be the deductive closure of A in classical first order logic: if SpT
then Vg € S Fy € T({B}p{e}).

5. For S and T finitely axiomatizable, SpT implies I3 F Const — Consg.

19Tn a mathematical context this requirement is formulated as follows: no every recur-
sively enumerable theory is reducible to Q or I¥; (weak subtheories of PA); and Th(IN)
is not reducible to Q or I¥;, where Th(IN) is the set of sentences of Lpa holding in the
standard model of natural numbers.
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Niebergall then turned these clauses into axioms in order to provide an axiom
system for reducibility?’; nevertheless, apart from this attempt they could
equally well be considered as loose guidelines for an inquiry about reduction.

Theory reductions, especially between mathematical theories, are inten-
sively studied among logicians and philosophers. In what follows I summarize
some open issues concerning them:

1. Although Niebergall’s criteria are strong enough to reject some alter-
native definitions of reducibility, they are non conclusive with respect
to the dispute about the individuation of the prime reducibility con-
cept between relative interpretability and proof-theoretic reducibility.
Since reasons for both the stances are plainly formulated by their sup-
porters, I refer to their papers: Feferman [17]|, Appendix section A.6,
and Niebergall [35], sections 2 and 4.

2. Another issue concerning reductions, or better technical results in re-
ductive proof theory, is their pretended philosophical relevance, raised
by Hofweber [30]. In the domain of mathematics, he distinguished
between foundational importance and large-scale philosophical impor-
tance of reduction. The former concerns questions about axioms,
strength and so on, while the latter questions about mathematical
objects, knowledge and such. He argues that neither relative interpre-
tation nor proof-theoretic reduction are sufficient for a philosophically
relevant reduction, for they both are relations between formal systems
and have no impact on underlying forms of reasoning, i.e. the inter-
preted or the informal theories that are modeled by those systems. We
shall see that talking about truth theories this gap is weakened and
somehow disappear.

3. Another controversial issue is the relationship between theoretical and
ontological reduction: from the fact that a theory is reducible to an-
other — in one of the senses previously outlined — does it follow that
the objects which one theory talks about are the same as the objects
of the other theory? For example can the relative interpretability of
PA in ZF be seen as an argument in support of the claim that natural
numbers are sets? And moreover, which notion of theory reduction,
if there is any, involves an ontological reduction between objects of
those theories? There are different views. According to Niebergall,
although the notion of theoretical reducibility between S and T is a
necessary condition in order to have an ontological reduction — or at
least it should be entailed from an ontological reduction —, it does not
seem enough: there must be a further unspecified condition between
theories. He warns against the risk of connecting purely syntactical

208ee Niebergall [35], especially the third section.
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relations with statements about ontological assumptions. Hofweber
shares the same view: from a proof-theoretic reduction does not follow
that involved theories talk about the same things. A position diverg-
ing from these is due to Halbach. He sees ontological reduction in the
weaker sense, that is as a mapping between assumptions of different
nature (arithmetical, set-theoretical, truth-theoretical etc.), more than
a mapping between different kind of objects (set, number etc.). Then,
relative interpretations are examples of ontological reduction, once it
is understood in this way.

Since discussing these questions without specifying a domain is not ad-
visable, in the next section I shall attempt to study reduction having as area
of application axiomatic theories of truth. My purpose is both to understand
the relevance of a metatheoretical analysis for truth theories and to shed light
on problems relating to reduction in general. In particular, about the afore-
mentioned issues we shall see to what extent for reduction between theories
of truth we are led to accept a methodological pluralism and philosophical
significance of results. Finally, I shall discuss the ontological problem.

2.4 Reduction and truth

What I plan to do now is to put together previous considerations, by ap-
proaching a general issue:

What does it happen if we apply the notions of reduction to truth theories?
The answer must be articulated from different perspectives:

e ‘justificational’ perspective: why comparing theories of truth? To what
extent the act to compare truth theories can tell us something about
the notion of truth?

e methodological perspective: how to compare truth theories? How to
calibrate our instruments to ensure they fit for our purposes?

e technical perspective: I argue that other attitudes must be set aside
for a while in order to give way to logic.

e philosophical perspective: what is the meaning of the notions of re-
duction when applied to this context? Namely, how they should be
interpreted? What do they entail? Which are their side effects on
conceptual aspects underlying truth theories?

43



2.4.1 Why reduction in axiomatic theories of truth

Arguably, a justification in this frame has to be done a posteriori, but of
course we can ask what we expect from an investigation of this kind and
which are our aims. Literature abounds in different views about the pur-
poses, but they can be collected into two different approaches to theories
of truth (which are clearly not mutually exclusive): an instrumentalist ap-
proach and a philosophical or conceptual one. I argue that whatever is the
attitude, a metatheoretical investigation allows us to achieve some important
results.

On the one hand, truth theories can be studied with philosophical interest
and, since every theory embodies a different view, the act to compare them
is a way to learn something more about the underlying stance on truth.
On the other hand, the aim might be to use them as a tool or a device to
increase the power of other theories and so what does really matter is their
proof-theoretical power. And a practicable strategy is to establish the proof-
theoretical strength of a theory by reducing it to another one whose power
is well known. Therefore, a metatheoretical inquiry seems to be an useful
tool in dealing with truth, but let us tackle this problem in details.

To what extent comparing truth theory is philosophically relevant? Of
course the answer requires the abandonment of a foundational perspective,
in the sense stated before: the aim is no more to lead back a theory to
another theory which is somehow more fundamental in order to justify it,
indeed, in some ways, we witness its reversal. There are at least two problems
with respect to a foundational claim. First, it seems hard to find ‘criteria
of justification’, that is to say something that makes a theory more justified
than the others. Such a criterion might be the correspondence with an
immediate insight or essential features about truth. But axiomatic theories of
truth can be seen as ‘thought experiments’ and each way must be considered
equally interesting and desirable in principle. Otherwise the peculiar gain of
axiomatizations is lost, namely the fact that it allows one to employ any kind
of concepts, even the less intuitive, and to explore (formally) consequences
of their employment. Secondly, the reducing theory, rather the reduced
one, gets more benefits. As a very simple example consider the fact that
in CT| typed Tarski-biconditionals can be derived, that is the theories TBJ
and UTB] are subtheories of CT[?!. This reduction makes us aware of the
expressive power of CT[, to some extent is a mark in its favour and in no
way is a justification for the reduced theory. So, the more notions of truth
are ‘simulated’ in a theory, the more it becomes attractive.

This brings us to a crucial point: the abandonment of foundational per-
spective does not entail a loss of philosophical relevance for the problem of
reduction and truth. Even better, it is exactly with respect of this issue that
theories of truth reveal their own peculiarity. We are dealing with syntacti-

21For a proof see Halbach [28], p. 66.
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cal theories, which are to some extent in vitro settings suitable to study the
behaviour of the truth predicate. The loaded question about (the essence
of) truth is defused by turning it in a harmless and, maybe, more productive
one: how does the predicate ‘to be true’ work? In other words, the issue
is operational, with Wittgensteinian echoes: the meaning of T is fixed by
providing axioms and rules. Clearly, each axiomatization is built in order to
reflect a particular conception of truth. It is interesting, from a philosophical
point of view, to investigate the links between different claims about truth
and this can be done by comparing theories that somehow ‘determine’ them.
In other words, I argue that reductions between axiomatic theories of truth
have a philosophical relevance because of a peculiar feature: a deep connec-
tion between axiomatic framework and what the theories are about. The
formal apparatus in a theory of truth is something that cannot be isolated
at all. So, reduction between truth theories is neither just matter of words
nor just “an association of the relevant formal languages in the right way”?2,
rather it should be considered as an interesting and philosophically relevant
reduction.

Another reason to pursue reduction projects is the following: reductions
provide a relative consistency proof. As seen before, whatever notion of
reduction is adopted, if a theory S is reducible to another theory T which
is known to be consistent, then S is consistent. The claim that consistency
proofs represent a philosophically relevant reason to compare truth theories
might be further questioned from two different points of view:

e why theories of truth should be consistent?
e why should we, as philosophers, care about having a consistency proof?

Consistency for an aziomatic theory of truth is everything but a side issue, it
is not just a nice or auspicabile feature, but something more: in my opinion,
it should be considered as a necessary requirement. When paradoxes like
the Liar can be carried out in a theory of truth, they threaten the whole
system and the motivations that underlie it. For this reason all efforts are
directed to avoid a contradiction, and in particular to ensure that the Liar
is not derivable.
Inconsistency for a formal system S can be understood in two ways:

[Ctr1] Derivability of a contradiction, that is S+ L.
[Ctr2] Derivability of each sentence, that is for all ¢ S+ ¢.

It is well known that [Ctrl] and [Ctr2], in an intuitionistic framework (and
a fortiori in a classical one), entail one another. Of course inconsistency of
the second kind is something we would like to avoid, as otherwise we would

22Cfr. Hofweber [30], p. 132.
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have a trivialization of the theory. By choosing a suitable logic?® one can
defuse the implication [Ctrl] — [Ctr2], suggestively called explosion. Then,
an escape route for [Ctrl] is simply to accept that contradictions are provable
(by denying Law of Non-Contradiction): some sentences — called dialetheias
— fall into truth-value gluts, that is, are both true and false?*. Since our
theories extend PA, which is known to be consistent, those sentences should
belong to Lr. Typically, a dialetheia is the Liar sentence, A. From a seman-
tical point of view, A is allowed to be both true and false, that is it belongs
both to the extension and the antiextension of the truth predicate. At any
rate, in these cases inconsistency is avoided by deviating from classical logic.
Regardless of justifiability of this kind of approach??, resultant theories of
truth are still consistent. But can the claim of consistency be completely
dropped in an axiomatic approach to truth? It seems that the expediency
of an inconsistent axiomatic theory of truth is really hard to maintain.

For what concerns the second issue, Hofweber wonders whether we, as
philosophers, should care about having a consistency proof. Note that he is
talking about mathematical theories:

It might seem that the answer why we would want to have a
consistency proof is obvious: we want to be sure that a certain
theory is consistent, so to be sure that no paradoxes or contradic-
tions can be derived from certain axioms. This, of course, would
be nice to know. But it is at first not so clear why knowing this,
or being able to prove this, should be taken to be of much philo-
sophical significance. After all, a consistency proof shows that
the axioms of a certain axiomatization of a branch of mathemat-
ics are consistent. It does not thereby necessarily show anything
about the branch of mathematics, only about the axiomatization
of the reasoning within that branch of mathematics26.

Now we ask: what about truth theories? Even supposing that for math-
ematic this is so — and this claim can be further questioned — does the
same irrelevance hold for truth theories? Or, rather, does the consistency
show something about truth? I implicitly accept, and it would be difficult to
argue otherwise, that axiomatic theories of truth per se have a philosophical
relevance. Since I said we seek a consistent axiomatization, consistency proof
automatically gets the same relevance. Moreover, a peculiarity of theories
of truth is a close connection between axioms and what theories are about.
This makes consistency proofs very important from a philosophical point of
view. However, reductions are not the only tool to this aim: consistency

23 A paraconsistent logic, for a philosophical introduction see Priest [38], for a more
technical one see Priest and Tanaka [39].

24For a defense of this approach see Field [19].

25For a negative opinion see Leitgeb [33], criterion (h).

26Cfr. Hofweber [30], p. 138.
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proofs can as well be provided by using model-theoretic means, neverthe-
less as Halbach?” notes, proof-theoretic reductions are preferable as they are
more parsimonious in terms of resources. So, having a syntactical consistency
proof is always desirable. Concluding this remark, I hope I have provided a
further answer to the opening question: why reduction in axiomatic theories
of truth?

Furthermore, Halbach points out that reductions can be seen as com-
pleteness proofs as well, where completeness is taken in a weak sense that
I shall explain. Given a semantical construction (e.g. Kripke’s fixed point
theory), different axiomatizations can be setting up to capture it. We would
like to verify whether a set of axioms is an axiomatization of a particular
semantical theory as complete as possible.

As pointed out, ‘completeness’ cannot mean that all sentences
valid in a semantic construction are provable. But we may show
that the system is complete by showing that the tools employed
in the semantical construction are available in the system?®.

A semantical construction is carried out in informal mathematics, but in
most cases certain second-order systems are sufficient. Reduction of those
second-order principle to truth-theoretic principles might be seen as an ad-
equacy condition for the axiomatization.

These reasons justify a philosophical interest towards comparative study
of different theories of truth and show how, even in issues of a conceptual
nature, reductions can be good tools.

Additionally, theories of truth can be treated instrumentally. Truth pred-
icate can be added to mathematical theories in order to increase their ex-
pressive (and proof-theoretical) power?® and also, we shall see, in order to
pursue an ontological parsimony. Following this approach, it is even more
immediate to see the utility of reduction. First, it can be shown the relative
interpretability of a theory of truth in an arithmetical theory, more exactly
some subsystems of second order arithmetic define the truth predicate of
certain theories. Conversely, wide parts of mathematics can be developed in
truth systems. Previous results taken together give us respectively the up-
per and the lower bound of proof-theoretical strength of truth theories. In
other words, by proving an equivalence between subsystem of second order
arithmetic and theories of truth we get a measure of the power of the theory
itself. To be aware of this strength is essential when the perspective is to use
the truth predicate as a tool to increase the expressive power of mathemati-
cal theories. Therefore, even (and maybe mainly) from an instrumentalistic

27Cfr. Halbach [26], p. 98

2Tvi, p. 99.

2%Gince the increase might be substantial, reductions of subsystems of second order
arithmetic to theories of truth contribute to feed the philosophical debate about deflation-
ism.
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point of view metatheoretical investigations turn out to be indispensable.

2.4.2 Methodological perspective

Supposing we have provided enough reasons to carry out a metatheoretical
investigation, we have now to face the issue from a methodological point
of view. It has been already said that the strategy is comparing axiomatic
theories of truth, but comparing with what? By means of what? Depending
on the purposes of the comparison theories can be compared with:

1. The base theory. As said before, we take into account only truth
theories that share their base theory. So, throughout this discussion
the base theory will be PA. Comparing a truth theory extending PA
with PA itself involves two different notions: conservativity over PA and
interpretability in PA3?. This kind of comparison comes from the need
to understand to what extent the truth predicate (i.e. the set of truth
axioms) changes the base theory. The former concerns strength and
investigates how much the proof-theoretical power of PA increases when
the truth predicate is added. Of course, in order to do this one can
restrict to consider the arithmetical content, that is the set of theorems
which do not contain truth predicate. A survey of this kind leads to not
at all trivial results and, moreover, is rich in philosophical implications.
For what concerns the latter, we do not care how much stronger the
base theory gets, but we wonder whether the theory of truth deviates
so much from the base theory not to be more interpretable in it. So,
we look at the truth-theoretical content.

2. Second-order systems. Theories of truth has been compared with
subsystem of second-order arithmetic3! and many results have been

obtained in terms of equivalence3?.

Second-order arithmetic is formulated in a two-sorted language with
one sort of variables x, ¥, z, ... ranging over natural numbers and the
other sort X, Y, Z, ... ranging over sets of natural numbers, that is sub-
set of w = {0,1,2...}. The language Lo of second-order arithmetic
contains the symbols of PA, and in addition has a binary relation sym-
bol € for elementhood. Other clauses have to be added to the inductive
definition of formulae in the obvious way: there are new atoms of the
form ¢ € X and formulae are closed under second-order quantifiers. As

30For a characterization of these notion see the previous section.

31Sometimes second-order arithmetic is called ‘analysis’ because it is possible to formal-
ize the real numbers in it, for real numbers can be represented as sets of natural numbers
and second order arithmetic allows quantification over such sets. For an overview see
Simpson [42], especially Chapter 1.

32For a list of result in such field see Halbach [26].
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axioms it contains the axioms of PA, induction axiom:
VX(0e XAVz(z e X — s(x) € X) = Va(z € X)),
and comprehension schema:
AXVu(u € X + ¢(u)),

where ¢(u) is any formula of L9 in which X does not occur freely.
Subsystems are formulated in the same language and have as axioms a
proper set of the theorems of second-order arithmetic. Means adopted
in comparing such systems with theories of truth are the methods of
reductive proof theory like ordinal analysis and relative interpretations.

. Other theories of truth. One can compare truth theories to each
other by different means according to the purposes. Fujimoto ([22])
further refined the notion of relative interpretability and proposed a
stricter notion of interpretations, relative truth definability that leaves
the arithmetical vocabulary unchanged and does not relativize the
quantifiers of the source theory. That is, just the truth-theoretical
content falls under its scope. This feature makes relative truth defin-
ability an excellent candidate for the comparison between theories of
truth.

Definition 2.4.1. Let Q and S be theories of truth over languages Lq
and Ls respectively, and let £q be Lpa U {T;}icr where I is a certain
index set. The base theory is PA, with the language £. Given a formula
0; of Ls for each ¢ € I, a translation 73 from Lq to Ls is defined as
follows:

o, if ¢ € AtFmlg;
0i(x), if ¢ = Ti(z);
T5(9) =9 ~Tz(), if ¢ =
Ti(bo) V T5(th1), if ¢ = tbo V ¥1;
VaT5(v), if ¢ = Vi),

We say Q is (relatively) truth definable in S when there exists formulae
0;(x) of Ls for each i € I such that

QF¢ =Sk Ti¢) forall ¢c Ls.

In other words, S defines the truth predicate of Q if and only if there is
a monadic formula of the language of the former such that the result of
uniforming substituting it for the truth predicate T" in a theorem of Q
is a theorem of S. Somehow, in S there is a formula that deputizes the
truth predicate of Q. This definition is general enough to encompass
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truth theories with more than one truth predicate, such as RT and it
can be further generalized in order to embrace cases in which theories
do not share their base theory. Additionally, the relation of truth
definability meets Niebergall’s conditions?3.
Thus, truth theories can be compared from various points of view and means
adopted must be the most suitable for the intents. I argue that comparisons
must be performed in the pursuit of methodological liberality: one cannot
rule anything out a prior: or underestimate the contribution of any strategy.
In the domain of theories of truth emerges the absence of a privileged instru-
ment. This is due to their twofold nature: their are both mathematically
useful instrument and philosophically relevant theories. Moreover, the sup-
pleness of the notions of reduction already guarantees a sort of methodolog-
ical pluralism, that is to say that philosophical claims can be investigating
by using proof-theoretic means or, wvice versa, by using purely conceptual
comparison tools one can achive strictly proof-theoretical results. The proof
that we shall see in the next chapter is an example of this idea.

2.4.3 Logical results and philosophical perspective

A further problem is how to assess the contribution of logic in this field. The
claim that the issue should benefit from formal results is questionable as
well. There is no agreement about what a result in philosophy is or should
be and, furthermore, about the evaluation (positive, negative, neutral?) of
the role of logical results (e.g. a meta-theorem). Roughly speaking, given
a philosophical debate a technical result might have a negative role if it
helps to discredit a philosophical stance (a very classical example: Godel’s
theorems with respect to Hilbert’s original program.); otherwise, if it con-
tributes to defend certain claim it would have a positive role. I advocate the
importance of a dialogue between philosophical claims and technical results
in the spirit of mathematical philosophy. This is worth generally speaking,
but since we have already chosen an axiomatic approach to truth it becomes
essential: being able to benefit from formal results can be considered the
main advantage of axiomatic approach towards truth. Hence, I argue that
philosophical issues should benefit from formal results, but on the other hand
these results have to be found in a field as possible free from philosophical
‘contaminations’ and restrictions. As said before, once we chose to deal with
logical objects (such as formal systems, translations etc.) all strategies, even
the more counterintuitive ones, must be pursued. Philosophical ties must be
recovered only subsequently in the interpretation of results.

Clearly, the hardest thing is to understand to what degree a result (once
identified as negative or positive) is conclusive or decisive with respect to
the problem itself. My stance with respect to philosophical interpretation

33Gee section 2.3 on page 41.
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of results is the following: it must be a posteriori analysis and, above all,
the survey must be conducted case by case. This is particularly true for
the interpretation of reduction results. It should be made retrospectively:
what matters is not just the result but the way taken to reach it, so that
even negative results (non-conservativity or non-interpretability ones) can
be used as opportunities to learn something more about theories.

Notions of reduction per se do not have a clear or univocal content;
philosophical implications, if there are any, must be discussed with a look at
single cases, for their relevance and meaning are often controversial. As an
instance, consider the problem of how to interpret, philosophically speaking,
the conservativity of a truth theory over its base theory. This is a crucial
point in the modern debate about truth for its close link with deflationist
accounts of truth and the interpretation of results is anything but obvious.

2.4.4 Ontological reduction

After outlining the problem of applying reduction to the field of truth the-
ories (with an inquiry about motivations, methods and possible outcomes),
we focus on the specificity of axiomatic theories of truth with respect to
ontological reduction. I argue the peculiarity of truth theories is a sort of
‘adherence’ between the theory and its object.

What are the object of a truth theory? Without going deeper into the
issue about their nature, in the first chapter I have assumed that the truth
bearers are sentences or, more cautiously, something with the same structure
of sentences, that is with atomic expressions and logical operations for form-
ing complex expressions. Clearly, sentences are always sentences of some
language, therefore in the proposed theories the objects are sentences of the
language of the base theory for typed theories of truth, and of the language
of the base theory expanded by the truth predicate for type-free theories.
The base theory contains its own (logical, mathematical or empirical3*) vo-
cabulary, but at the least it has to contain the objects of truth predicate.
Using a sufficiently strong mathematical theory as base theory has a great
advantage: the truth predicate applies to natural numbers considered as
codes of sentences.

Hence, syntactical objects such as sentences are identified with natural
numbers. But besides this, truth bearers and the truth predicate itself are
syntactical or linguistical entities. And, moreover, they are treated in a
syntactical setting. It is exactly this the adherence I am talking about. It
does not matter if one accepts or avoids ontological commitment towards
these objects, namely the objects that can be true. In both case one is
inclined to consider the descriptive symbol T' and codes of sentences not just
a pale theoretical counterpart of the predicate ‘to be true’ and sentences in

34We use Peano arithmetic as the base theory, but other more comprehensive base
theories can be used as well.
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natural language, precisely because they share their linguistic nature®. It is
not just as other theories: if we have a first-order formulation of a physical
theory there is a formal apparatus with a specific interpretation (arguably
more than one) but physical objects — keeping aside the problem of their
existence when are not observable — are considered something essentially
different from the concepts of the theory. Mathematics is where things get
even more complicated, since the intended objects are abstract objects but
not yet linguistical entities, so a certain discontinuity does remain. At least
one is willing to accept that in a theory of truth what you talk about is not
so different in its nature from what you use to talk about. One can object
that truth in natural language is a semantic notion and of course it is also
so. Nevertheless in an axiomatic approach the meaning of truth is given by
providing syntactical requirement and it seems that for truth is especially
correct that syntax and semantics are very closely related.

This remark forces to reassess the problem of ontological reduction. Since
there is a close connection between axiomatic systems and conceptions of
truth behind them, a reduction between truth theory cannot be considered
something which concerns just theories, it somehow concerns also objects.
But it can be seen as an ontological reduction only if you attach to the
ontology a very peculiar status, that of set of different linguistic concepts
together with laws that regulate their behaviour.

Things change when theories of truth are compared with other kind of
theories, in such case the ontological issue assumes a special importance
and becomes a problem to be clarified. Whereas reductions of theories of
truth to each other can be seen as homogeneous reductions, since usually
they share their conceptual apparatus®®, now we are dealing with something
different: second-order mathematical theories, i.e. theories of sets of natural
numbers, can be reduced to truth theories. How this kind of reduction
is carried out? The arithmetical content is left unchanged, just formulae
containing second-order parameters are translated into first-order formulae
by using truth predicate. The idea is the following: the expression t € Y,
such that ¢(z) is the defining formula for the set Y37 is interpreted as ‘the
formula Y is true of ¢’, i.e. T("¢(t)™"), and, respectively ¢ ¢ Y is translated
with F'("¢(t)™). Such inhomogeneous translation poses problems on the
ontological front. If one accepts Halbach’s view?®, ontological reduction in
such case consists precisely in the fact that set-theoretical expressions —
or assumptions — are turned (by a translation) into truth-theoretical ones.
In order to carry out this reduction no other ontological assumptions are

35For a defense of the logico-linguistic nature of the notion of truth see Horsten [31],
section 5.2.3 p. 91.

36 A further fine distinction should be made for theories such as RT with more than one
truth predicate.

37 According to the schema of arithmetic comprehension.

38Gee section 2.3 on page 41.
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needed, that is, sets are not reduced to some other objects. Once again,
ontological reduction concerns ‘words’ more than objects.

Therefore, the field of theories of truth is suitable even to ‘test’ claims
about ontological reductions.

93



Chapter 3

A case study: the proof theory
of DT

3.1 Determinate theory of truth

Feferman introduced a new formal theory of truth extending PA in his [18].
As usual, a new unary predicate T'(x) for truth is added to the language of
PA, where x ranges over codes of sentences in the extended language. The
starting point is the informal idea that the domain of the truth predicate
consists exactly of the determinate and meaningful sentences. In order to
formalize this insight a formula D(x), expressing that z is a determinate
meaningful sentence, is defined. The system, then, is given by the axioms of
PA (in the extended language), axioms for the predicate D and axioms for
T relative to D. The resulting system is called DT for determinate truth.

3.1.1 Philosophical motivations and background idea

In the first chapter I have outlined different way out from paradoxes in build-
ing an axiomatic theory of truth. I have argued that, once a philosophical
attitude is chosen, the most natural strategy is to restrict in a suitable way
basic principles, that is disquotational sentences. However, things are not
simple since such restriction should meet different desiderata, namely by
restricting the domain of the T-schema one has to:

(i) rule out the liar-like sentences;

(ii) not rule out intuitively unproblematic sentences such as the truth teller
or any iteration;

(iii) isolate a natural set of sentences;

(iv) make a philosophically justifiable choice.
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The reviewed solutions do not satisfy one or more of this criteria, as TB
excludes sentences containing 7" and it seems to be overmuch restrictive; PTB
accepts just T-positive formulae and although this points out an interesting
feature of paradoxes (i.e. the fact that the self-reference is harmful just when
it is negative) it is hard not to see it as an arbitrary, ad hoc choice.

What about DT? The idea is to let the T-schema hold just for sentences
in the domain of the truth predicate. This seems very natural, even trivial:
each property has a domain, such that it makes sense to apply the property
only to objects in that domain. Feferman ascribes the background idea to
Russell. In his analysis, Russell blames the reference to a generalized totality
of some kind for certain contradictions, among which he mentioned also the
Liar paradox. A solution for this problem is to restrict somehow this totality.

Every propositional function has a certain range of significance,
within which lie the arguments for which the function has values'.

It should be observed that Russell refers to propositional functions under-
standing concepts in a Fregean sense. In strict logical terms we are talking
about monadic formulae or, more broadly, about open formulae, which de-
note directly or indirectly properties and relations and among which there
is of course T'(x). At any rate, the strategy is to reject the assumption
that whatever are the objects taken as arguments of a concept, the resulting
proposition must be meaningful.

Now, let us investigate the domain of the property ‘to be true’. Since the
truth predicate is a predicate of some language, arguably, it ranges over the
set of sentences of that language. This is not enough to avoid contradiction,
so a further restriction must be operated. Feferman identifies a restricted do-
main with the set of sentences that are meaningful and determinate, namely
those sentences having a definite truth value, true or false?. Although, ac-
cording to Feferman, meaningfulness and determinateness coincide, he keeps
them separate because it is a controversial issue whether this equivalence
holds. For example, some authors (e.g. Kripke?®) regard a Liar sentence as
meaningful, but of course non determinate (namely it is neither true nor
false). The distinction, if there is any, can be roughly formulated as follow:
a sentence is meaningful if it “expresses a (linguistically acceptable) propo-
sition” while is determinate or evaluatability meaningful® if it “expresses a
proposition susceptible to receive a truth value”. But in order not to commit
ourself with consideration of semantical character, this distinction can be

'Cfr Russell [41], p. 234.

*Reinhardt ([40], p. 220) uses the word significant to mean true or false. A sentence
can be meaningful without being significant, so significant is used in a very restrictive
sense, which is exactly the seme of meaningful and determinate in Feferman.

3Cfr. (32, ft 17.

“For this terminology see McDonald [34], p. 435.
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ignored: the sentences in the domain of T" will be said both determinate and
meaningful.

This is a solution in line with 2*°: critical sentences can be consistently
considered as non determinate, they simply are neither true nor false. Ac-
cordingly, they cannot be substituted as instances in T-schema. The issue of
arbitrariness comes into the picture again, does this choice threat the nat-
uralness of the theory? I shall deal with this question later, in an overall
discussion about a critical assessment of the theory.

Let us now see how the domain is formally defined. Let D be the domain
of significance of T, and let x be a metavariable that stands for numerals
of godelians of sentences. Then, D(z) can be defined as the disjunction of
T(x) and F(x), where F'(z) expresses the falsity of = (i.e. the truth of the
negation of ). This definition is obtained operatively in the following way:
let ¢ be a sentence, since D is the domain of truth, both T7¢" — D" ¢ and
F"¢"'— D"¢" hold. Then

T ¢V Fr ¢ — Do,

Conversely, the T-schema is restricted to sentences satisfying D: D" ¢! —
(T"¢" < ¢) and, obviously, D" ¢ — (F" ¢ < —¢). Thus, we have:
D¢ = (TT¢7V F ¢ < ¢V ). Then:

Dig7 =T ¢'VE ¢
The conclusion is:
D¢l T ¢V IE ¢ for each sentence ¢.

This argument allows us to identify D in terms of T: D(x) just abbreviates
T(x) V F(x) and so it must not be introduced separately as a predicate®.
Moreover, Feferman requires that D(x) must be strongly compositional,
in a way that will now be explained. On the one hand, D must be closed
under the propositional operations (e.g. if a sentence belongs to D, then its
negation belongs to it as well) and quantifiers. For the universal quantifier,
we take a compound sentence to belong to D if all its substitution instances
by meaningful terms belong to D. On the other hand, the closure condi-
tions for D are assumed to be invertible: a complex sentence is meaningful
and determinate only if its syntactic constituent sentences are so. This is
not a trivial claim. Of course it holds for meaningfulness: a sentence is
meaningful only if all of its parts are meaningful. That is, if a negation of

5See section 1.4 on page 14.

SFujimoto [22] ft 22, pointed out that D"¢? <+ TT¢7 V F "¢ for each (standard)
sentence ¢ does not entail D(x) <> T'(z) vV F(z) for all x because of the overspill argument.
Being a theory extending PA, DT must have a non-standard model and thus non-standard
sentences for which the equivalence is not necessarily provable.
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a sentence is meaningful then so is the sentence itself. What about deter-
minateness? By the common interpretation of connectives, a sentence like
¢ V 1 is determinate (e.g. true) even when one of the constituents ¢ or
has not a truth value, while the other is true. Nevertheless, Feferman opts
for a strictly compositional semantics: irrespective of the logical form of a
compound sentence, the presence of just an undeterminate constituent it is
enough to make the whole sentence undeterminate too. According to this
requirement, a suitable logic is chosen to deal with the lack of truth value so
that a sentence is evaluated as neither true nor false if one of its components
lacks a truth value; that is a logic like the Weak Kleene one (WKL). The
strong compositionality of D is expressed by formulae with a biconditional
like:
D(zvy) <+ D(z) A D(z).

Anyhow, we shall see that the requirement of strong compositionality it is
not met in full because of the treatment of —.
3.1.2 Axiomatization

Now we can turn the preceding intuitive ideas into axioms in a formalized
setting and later sound out how close we are to them. Let Lpa be the
language of PA and let Lp = Lpa U {T} be the extension of Lpp by a
new unary predicate 1. Moreover, let Sent, be the representation of the
syntactical notion that holds of = if and only if x is a code of a sentence of
L. As usual we can abbreviate T'(wz) by using F'(z).

Definition 3.1.1. The system DT consists of all axioms of PAT (i.e. PA
plus full induction for formulae of £7) and the following axioms:

DT1) Vz [AtSentpa(xz) — D(z)]

t [D(T(t)) <> D(t")]

(DT1)
(DT2) V¥
(DT3) Yz [Sentr(z) — (D(7z) <> D(z))]
(DT4)
(DT5)
(DT6)

DT4) Vavy [Sentr(zvy) — (D(zVy) <> D(z) A D(y))]
DT5) VaVy [Sentr(x—y) — (D(z—y) <> D(x) A (T(x) — D(y)))]
DT6) Vovz [Sentr(Yvz) — (D(Yvx) <> VtD(z[t/v]))]

DT7) VsVt [T s=t7 ¢ s =1t ]

(

(DT8) Vt [D(t") = (T(Tt) + T(t"))]

(DT9) Vz [Sentp(z) A D(z) — (T(—x) < T (x))]
(

DT10)VzVy [Sentr(zVy) A D(xVy) — (T(zVy) <> T'(z) V T'(y))]
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(DT11)VaVy [Sentr(z—y) A D(z—y) = (T(z—2y) < T(x) = T(y))]
(DT12)VoVz [Sentr(Yvz) A D(Yvx) — (T (Yvz) <> VT (z[t/v]))]

The first group concerns the predicate D: (DT1) states that every atomic
sentence of the base language satisfies D(z), but it can be easily shown by
induction on the complexity of ¢ that DT proves D" ¢ ' for each sentence ¢
of Lpa. The second axiom says that a sentence of the form ‘something is
true’ is determinate if and if what is said true is already determinate. The
remaining axioms reflect the closure conditions for D: it satisfies the strongly
compositional conditions. Nevertheless, axiom (DT5) seems to express an
anomaly with respect to the claim of strict compositionality, and indeed so it
is as we shall see in the next section. The second group expresses the compo-
sitional nature of truth in a quite restricted manner: for x satisfying D, T'(z)
satisfies the usual recursive defining conditions (Tarski’s clauses). Moreover,
under the same restriction, truth is materially adequate in a Tarskian sense:
DT proves

D¢ — (TT¢7 <> ¢) for each ¢ of L.

This can be shown in DT, again, by induction on the formation of ¢.

3.1.3 Critical assessment

The system DT is type-free, i.e. it contains its own truth predicate that can
be applied also to sentences which already contain it. Moreover, the chosen
base logic for the system is ordinary classical 2-valued logic. Inconsistency
is avoided by restricting T-schema as follows:

D¢ — (TT¢" <> ¢) for each ¢ of L.

Of course, it can be shown that the Liar sentence (in its different formula-
tions) does not fall within the scope of D, that is it must be neither true nor
false.

Let X\ be a sentence such that DT = A < F"A". If D"\, then the usual
contradiction from the T-schema is derived. So DT proves —=D" A7 and the
paradox cannot be carried out. Note that the same holds when A is such
that DT F A < =TT A

It is worth noting how the strengthened liar is accounted for in DT. There
are different formulations of this sentence, consider the following:

This sentence is not true, that is, it is false or meaningless.

In formal terms, let ¢ be a sentence of L7 such that DT F o < =D"o'V
FTo. Again the escape route is to prove that =D"¢ . Suppose D" ¢, then
DT F o < F"o, and we have the classical contradiction as before. Hence
—D"¢". Then DT+ ¢ but DT ¥ Do
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In a very elegant manner paradoxes are avoided, moreover DT can be
proved consistent by providing a standard model for it”. Anyhow, we saw
that there are other different desirable criteria, As a reminder we repeat
them, in Leitgeb’s formulation:

Truth should be expressed by a predicate (and a theory of syntax
should be available).

If a theory of truth is added to mathematical or empirical theories, it
should be possible to prove the latter true.

The truth predicate should not be subject to any type restrictions.
T-biconditionals should be derivable unrestrictedly.

Truth should be compositional.

The theory should allow for standard interpretations.

The outer logic and the inner logic should coincide.

The outer logic should be classical.

Let us now how close DT goes to meeting them:

(a) Met.

(b) Met for PA.

This requirement is somehow related to the formulation of axiom (DT5).
We should be able to prove in DT that each theorem of PA is true, that
is:

DT F T'(Vx (Sentpa(x) A Bewpa(z) — T'(x))), (3.1)

where Sentpa () expresses that x is the Godel number of a sentence of
Lpa and Bew(z) is the primitive recursive representation of provability
predicate for PA. If we admitted the full interdefinability of connectives,
there would be a problem about that.

Reasoning informally, the claim (3.1) can be proved by induction in
DT. But in order to let the truth predicate commute with the universal
quantifier we need to apply the axiom (DT12). To this aim, it must
be proved that:

D(Vx (Sentpa(z) A Bewpa(z) — T'(x))),
or equivalently modulo the axiom (DT6):

D(Sentpa(n) A Bewpy(n) — T'(n)) for each numeral 7.

"See the next section.
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If — is defined as usual in terms of — and V, then modulo logical
equivalence we have to prove for each numeral 7:

D(~(Sentpa (i) A Bewpa(ii)) V T(7)).

But this disjunction is determinate if and only if both members are
so, this requires that D(7T'(n)) must hold for each n, where n is a
whatever numeral, no longer the code of a sentence provable in PA.
So, in particular, we must have D(T" A7), where A is the liar sentence,
that is a sentence for which DT proves A <+ =TT A7. This leads to
contradiction because if D(T™A™) holds, then by (DT2) D"A™ holds
as well. And so we would get A <> T"A". In order to avoid this
problem, Feferman takes — as a separate propositional operation, so
that D(z—y) «» D(—-xVy). This leads to the formulation of the axiom
(DT5) in which the predicate D applied to conditionals is not simply
equivalent to the conditional with D distributed over members: the
determinateness of the consequent holds under the hypothesis that
the antecedent is not just determinate but true. In this case we get
D(T(n)) only when 7 is the code of a sentence of the base language
that is provable in PA and this is not the case for A. Accordingly, this
formulation is not fully compositional. At any rate, the logic of — is left
unchanged and although D does not meet the strong compositionality
with respect to —, T does as the axiom (DT11) states.

Met.

Met only for those sentences satisfying the D predicate.
Met under the same restriction.

Met.

Met only to the extent that the inner logic is classical for sentences
satisfying the D predicate.

DT is formulated in classical logic, at the same time there are sentences
which lack to receive a truth value, i.e. Jz(Sentr(z) A =D(x)). So, in
some way the truth predicate is partial (it is better to say that T is
total on a restricted domain): the inner logic is a three-valued one. Ap-
parently, it seems that DT shows the same asymmetry of KF, with the
proviso that Feferman uses a different logic to handle with trivalence
(a variant of WKL with a different interpretation for the conditional.).
Nevertheless, it is clear from the axioms of compositionality for T" that
for those sentences satisfying D the inner logic is classical. For example
DT F AV =X and, since DT F -D" A", DT F =TT AV =A". Therefore,
working internally to D, the condition of bivalence is trivially restored.

(h) Met.
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Once one accepts the justifiability of the underlying choice of DT, the
restrictions in (d) and (e) becomes very natural as all the principles charac-
terizing the truth of a sentence (disquotation, compositionality etc.) must
be subordinated to the claim about the determinateness of that sentence,
in other words “the conditions on D should be prior to those on T, that
is, determinate meaningfulness is prior to truth®”. For example we have
D(zVvy) <> D(z) A D(y) and then D(zVy) — (T(xVy) <> T(x) vV T(y)).

Hence, the issue of naturalness for restrictions to (d) and (e) is subsumed
by the issue of naturalness for the whole theory DT. To restrict the domain
of T is a choice that can be further questioned by using natural language
as touchstone. It can be argued that whatever (name of) sentence could be
said true (or not true) and that there are no restrictions of any kind for the
domain. But saying something true is quite different from saying something
meaningfully true. Does it make sense to say the liar sentence true or false?
Natural languages are characterized by freedom in predications, even if the
resulting sentence is meaningless (this is also their beauty). Formal setting
offers us a further chance: to totally exclude the possibilities of meaningless
predications, as far as what is acceptable has to be specified before.

It seems less simple to justify the fact that DT does not meet (g), but
it can be simply argued that DT works in a desirable way just internally to
the logic of D.

3.1.4 Consistency

The proof of the consistency of DT is given by providing a standard model
for it. The starting point is a standard model IN for PA which has to be
expanded to a model M for DT in the language L£7. In this construction,
the intermediate step will be a 3-valued model M* from which M will be
obtained. M* will be given by an assignment v: Senty — 3, where 3 =
{t, f,u}. I specify now a distinction that will be ignored in the notation:

e —, V, =, [[: operations on 3 between truth-values. These are evalu-
ated by using a variant of weak Kleene semantics, as we shall see in
Definition 3.1.2.

e -, V, —, V: operations between sentences of L. In evaluating resulting
compound sentences we shall refer to the corresponding operations on
3.

Since there is no risk of ambiguity, I drop the bar under propositional oper-
ations and write simply —, V, — even for operations on 3.

Definition 3.1.2. Let D(a) be a =1t or a = f for a € 3.

8Cfr. Feferman [18], p.207.
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u u

avVb|t f u

(ii) D(aVb) iff D(a) & D(b); N .

) f t [ u

u u u u
a—b|t f u
(iii) D(a — b) iff D(a) & (a = f or D(b)); ; E i :
u u u u

(iv) D(J[{ai|i€I})iff D(a;) foreach i € I; if D(][{a; |7 € I}), then
[[{ai|iel}=tiff foreachie€ I, a; =1t else[[{a;|i€l}=u.

Define, then, a Ab and Y {a; |i €I} as usual in terms of =, V and V. We
cannot eliminate — in favor of -, V as in the weak Kleene semantics: a — b
is determined by a truth table which differs from that of —a Vv b for the value
in bold.

The 2-valued model IN of PA is expanded to a 3-valued model by us-
ing a Krikpe-style construction for a nonhierarchical truth predicate”. In
Kripke’s semantics T is the only partially defined predicate of the language
L1 = LpaU{T}. The interpretation of the truth predicate is given by a pair
(S1,52), where S; and So are, respectively, the extension and the antiexten-
sion of the truth predicate. The condition that makes T" a partial predicate
is the following: 51U Sy does not exhaust the domain — the set of sentences.
We start building a (partial) model for Lr: since the arithmetical vocabu-
lary is interpreted in the standard way, we can expand a model of PA by
adding the interpretation of the truth predicate. Thus, a partial model will
be a triple (IN, S1,S2), in which we have just to define suitable extensions
and antiextensions.

The Kripke’s construction proceeds inductively. At stage 0 we assume to
be in a state of maximum ignorance: both the extension and the antiexten-
sion of T are empty, i.e.

Moy = (IN,0,0).

Suppose we have defined M, = (IN, S1,S2) for any «, then M1 is the
triple (IN, S;, S;), where

Si={pelr| Moo}

9Cfr. Kripke [32].
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and /
So={ocw|p¢Sentyr yU{p€ L | MyE—0}.

That is, the extension of T" at the stage « is the set of (codes of) sentence
that are true in the model of the previous stage, and the antiextension is the
set of elements of the domain which either are not (codes of) sentences or are
(codes of) sentences that are false in M,. The definition of satisfaction is
given by using an appropriate evaluation schema, the strong Kleene schema,
which allows us to deal with sentences that might fail to receive a classical
truth value. By going on in this construction, a sequence of models is built
and more and more sentences of L7 are added to the extension or to the
antiextension of 7. We can define a model M, for each ordinal o. A
transfinite chain is built, by taking the union of the previous extensions and
antiextensions at limit stages, that is, for ordinals that are not successor
ordinals.

Does this process eventually come to the end? The affermative answer
is closely related with an important monotonicity property of the Strong
Kleene evaluation schema. Let ® be an operator on pairs of sets of natural
numbers defined in the following way:

®((S1,52)) = (51, ),
and let < be a partial ordering on these pairs such that:
(S1,52) < (Sy,85) iff S C S} and Sy C S,.

It can be proved that ® is a monotone (order-preserving) operation on <,
that is: if (S1,S52) < (S}, S5) then ®((S1,S52)) < ®((S;,S5,)). This means
that when we extend the interpretation of T" at each stage, all truth values
previously established do not change, at most certain undefined truth values
become defined. In other words, as « increases, the predicate T increases
in both its extension and its antiextension. The set of sentences is like a
container that is progressively emptied at each level: this leads to an ordinal
for which no new sentences can be declared true or false, namely there should
be an ordinal level « for which:

(Slon 5204) - (Sla+17 S2a+1)~

This pair is a fixed point of the operator ®, and the matching model is called
fized point model of L. The existence of this model can be proved formally,
and, moreover, it can also be proved that it is a “minimal” fixed point, in
the sense that any fixed point extends it.

Feferman takes the least fixed point M* = (IN,S7,S5) as a 3-valued
model of Lr. Note that Kripke uses strong Kleene semantics in his con-
struction as evaluation schema, while Feferman uses a variant of the weak
Kleene semantics. How can we ensure that changing our evaluation rules a
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minimum fixed point nevertheless exists? Kripke pointed out that the con-
struction can by carried out as well as far as the monotonicity of the operator
® is preserved:

So far we have assumed that truth gaps are to handled according
to the methods of Kleene. It is by no means necessary to do so.
Just about any schema for handling truth-value gaps is usable,
provided that the basic property of the monotonicity of & is
preserved; that is, provided that extending the interpretation of
T'(x) never changes the truth value of any sentence of £, but at
most gives truth values to previously undefined cases. Given any
such schema, we can use the previous arguments to construct the
minimal fixed point and other fixed points, define the levels of
sentences and the notions of 'grounded’, "paradoxical’, etc.!?

Now, I want to briefly explain how the monotonicity of the defined op-
erations -, V, — and II ensures the monotonicity of ®. Let (Si4,S24) and
(S18,523) be two pairs such that the latter extends the former, i.e.:

S1a € Sip and Sazn C Sag.
Now, the monotonicity of @, i.e.

D((S1as52a)) < @((S1p, S28)),

entails:
(5100 S24) < (S1. S35),
that is / / / /
Sia € S5 and Sy, C Sya.

Let us focus on the extension (but the same holds for the antiextension):
sy, C Siﬁ means that

{o| Ma=(N,510,50) F o} S {P | Mp =0}

In other words, the condition of monotonicity of ® expresses that any sen-
tence true (or false) in M, retains its truth value in Mpg. At this point,
evaluations come into the picture: let v, and vg be the evaluations corre-
sponding to the models M, and Mg, respectively. The condition Slla - S; P
and its analogous for the antiextension can be read as: the formulae evalu-
ated by vg must be all those evaluated by v, (with the same truth value)
plus a number of formulae that were undefined for v, and that become true
or false in vg. Since for all ¢, vo(¢) and vg(¢) € {t, f,u} we can express the
inclusion between sets of formulae above by saying:

va(¢) < vg(¢) for any sentence ¢,

0Ctr. [32], p. 711.

64



where < is the partial reflexive ordering of the set 3. The reflexivity condition
(ie. u <wu,t <tand f < f) ensures that the evaluated sentences retain
their truth values and the other conditions (v < ¢, u < f) ensure that no
truth value established by v becomes undefined; at most certain previously
undefined truth values become defined. And this is exactly the property of
monotonicity of ®. Since ¢ can be a compound sentence, in order to state the
monotonicity of ® the operations between truth values (whatever semantics
is chosen) must preserve the ordering of 3.

It can be proved that this ordering is preserved by the Feferman opera-
tions:

Lemma 3.1.1. Each of —, vV, — and II is monotonic on the reflexive ordering

of {t, f,u}.

Proof. 1 just focus on the monotonicity of —, the non trivial case. Assume
that @ < a’ and b < ¥’ for any a, @/, b, v’ in 3. In order to show that:

(a—b) < (d —=V),

we distinguish cases on the possible values of a and b

e D(a) and D(b).
If both a and b have a determinate truth value, then a = a’ and b =¥/,
thus trivially (a — b) = (a/ = V).

e a=u.
From the definition we have, whatever b is, (u — b) = u and u is <
any value.

e D(a) and b = u.
If a = t, then (t — u) = u, that again is < any value. If a = f, then
(f = u)=tand (f = V) =t whatever V.

O]

Based on what we said, this lemma yields an expansion of IN to a fixed
point model M* = (IN, ST, 53). In it each sentence ¢ is evaluated according
to the rules given in definition 3.1.2 and, furthermore, the value of T" ¢ is
the same as ¢.

Theorem 3.1.1. There is a 3-valued model M* of L1 given by an as-
signment v(¢) in {¢, f,u} to each sentence ¢ of Ly satisfying the following
conditions:

(i) (a) If ¢ € AtSent,, then v(¢) =torv(¢) = fand v(¢) =t iff N = ¢.

(b) If ¢ € Sent,, and ¢ is denoted by the term "¢, then v(T"¢") =
v(¢) otherwise v(T"¢™) = f.
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~¢) = ~v(¢).
¢V ) =v() Vu(y).

<

<

(
(
(
(v) v(Vax(x)) = [T{v(x(n)) |ne N}

M* is then converted into a 2-valued model M = (N, T") of £. Intuitively
the approach is the following: T is the only partially interpreted symbol,
but it is enough to make M™* a partial model. Since classical models are
characterized by the fact that the antiextension of a property coincides with
the complement of the extension with respect to the domain, M* is converted
into a classical model M by putting in the extension of 71" all and only the
(codes of) sentences true in M*, i.e. M =T"¢"if and only if v(T7¢") =t
in M*. By doing so, we build a model in which T is a total predicate.
Satisfaction in M is specified as follows:

Definition 3.1.3. (i) If ¢ € AtSent,, then M = ¢ iff v(¢) = ¢ in M*.
(ii) M = —¢ iff not M = ¢.

(i) M ¢V iff M = ¢ or M = .

(iv) M = ¢ — 1 iff not M = ¢ or M |= 1h.

(v) M k= Vax(z) if M = x(n) for each n € N.

In order to state the consistency of DT, we have to show that M is a
model for it. That is, the axioms of DT must be all true in M.

Lemma 3.1.2. (i) M |=T7¢7 iff v(¢) = ¢.
(i) M | Fro7iff v(g) = f.
(iii) M = D7 iff D(v(9)).
(iv) M = DTT ¢ iff D(v(s)).
Proof. (i) M ET ¢ & v(TT¢7) =t in M* < v(¢) = t.
(i) Analogous modulo condition (ii) of the theorem 3.1.1 and (DT9).

(iii) It easily follows from (i) and (ii) of this lemma, (iii) of definition 3.1.3
and condition (iii) of the theorem 3.1.1.
(V) MEDT¢T e MET T ¢ or M= FrT 77 & o(TT¢7) =
tVo(TTeT) = f < wv(g) =t V() = f:= D(v(e)).
U

Theorem 3.1.2. M is a model of DT.
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Proof. We prove that the axioms of DT are true in M.

(DT1) For any atomic sentence ¢ of £L: M = D" ¢™.
If ¢ is an atomic sentence of the base language, for (a) of 3.1.1: v(¢) =t
or v(¢) = f in M*, that is D(v(¢)). For condition (iii) of lemma 3.1.2:
MED¢™.

(DT2) For any term s of L7: M |= D(T(s)) +> D(s").
M = D"T(s)" entails M =TT (s)" or M |= F"T"s". This holds if and
only if v(T(s)) = t or v(T(s)) = f. Let s be the value of s, then for (b)
v(s") =t orwv(s’) = f, thus D(v(s")), which yields M = D(s").

(DT3) — (DT6) I shall show just (DT5): M |= Vz,y [D(zVy) <
D(z) A D(y)]-
Let ¢ and v sentences of Lp:
M = DTévy < D(v(oVe)) < D(v(¢)Vu(v)) <= D(v(¢)) & D(v(y)) &

Def3.1.2
MED Q& MED YT & MEDGTAD ™.
(DT7) For any t and s such that D"t =s T M ETt=s"<t =s.
METt=s"<ov(t=s)=tin M*. Since t = s is an atomic sentence of
L from (a) we have N |=¢ = 5. Thus ¢’ = s°.

(DT8) For any term t such that D(t): M =T T(t)" < T(t").
METTH) @o(Tt)=tin M* vt )=t METE).

(DT9) — (DT12) Just an example: (DT10). For any sentence ¢, ¢ of
Lr: M= Doy — (TT gV < TRé7V T 7).
Assume D¢V and TV M = T VY < v(dVy) = tin M* <
v(¢) Vv(¢p) = t. The hypothesis M = D"¢pVy" with (DT5) yields: M =
D¢ AND"™ Y & M D¢ and M = D" < D(v(¢)) and D(v(y))) <
D(v(¢) V v(y)). This condition allows us to use the definition 3.1.2, and
obtain: v(@) Vo) =t < v(ep) =torv(W) =t MET ¢ or M E
Ty e MET ¢ VT 0

Thus, we have proved by providing a (standard) model that DT is consistent.

3.2 Proof theory of the determinate theory of truth

In the second chapter I have argued in favour of the relevance of a metathe-
oretical inquiry both from a philosophical and instrumental point of view.
Let us now outline an example of how such analysis is carried out, with re-
spect to the just described theory DT. First we shall see the position of DT
in the galaxy of axiomatic theories of truth introduced before and, then, we
shall investigate proof-theoretic power of DT by reducing it to a particular
mathematical system. I shall discuss the value of the achieved results of
reduction.
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3.2.1 Relating DT to other theories of truth

Theories of truth can be compared to each other by means of different no-
tions, the most widely used are those presented previously. The tool we are
going to use throughout our discussion is relative truth-definability'. This
choice is justified by different reasons:

e It is a refined instrument which is capable of establishing strong re-
lations between theories by distinguishing theories that are joined by
other notions of reduction.

e Being stronger, it implies other notions of reducibility:

— Truth-definability implies conservativity on Lpa: if a theory S is
relatively truth-definable in T then the truth-free theorems of the
former are included in the latter, i.e. S is conservative over T for
formulae in Lpa. This holds since theories share their base the-
ory and relative truth-definability leaves the arithmetical content
unchanged'?.

— A relative truth-definition is a (strict) relative interpretation, or
better an interpretation without relativization of quantifiers. So,
if the truth predicate of a theory S is definable in T then S is
relatively interpretable in T.

— This does not hold in general for proof-theoretic reducibility, but

as far as truth theories are concerned this is the casels.

e It is particularly suitable for a philosophical approach to metatheoret-
ical investigation. Other notions of reduction focus on the truth-free
content of theories, but theories sharing the same arithmetical con-
tent can hide very different ways of understanding truth. Since in a
truth theory the underlying conception of truth is embodied into ba-
sic principles, it is attractive to investigate the ability of a theory to
simulate the way in which the other works. To this extent relative
truth-definability is an helpful tool in comparing conceptual aspects of
truth theories.

In the following diagram we can see the position of DT (and DTJ) with
respect to the other introduced theories.
In the diagram S = T means that S is truth definable in T and the reverse
direction does not hold. And S = T means that it is still open whether

HSee definition 2.4.1 on page 49.

12However, this holds in general when the base theory B of S and B’ of T are different. In
this case S can be truth-definable in T only under the condition that Lg C Lg'. Therefore,
conservativity is again preserved.

13To be more precise, one can formulate a formal conditions in order to ensure that
relative truth definability generally entails proof-theoretic reducibility. See Fujimoto [22],
p- 325.
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PUTB & KF & DT = RT

i
i) i) f CcT

f
PUTB] < KF| < DT] <« UTB = CT|

€0

the converse holds. In what follows I will explain the proof of some of these
results presented by Fujimoto in [22].

DT and RT

The first point we focus on is the relationship between DT and the theory
of ramified truth RT. As a reminder the theory of ramified truth up to «
(RT<4) is formulated in a language L., which is Lpa expanded by all truth
predicates T for all f < a. And Sentg(x) is a primitive recursive predicate
which stands for z € Sent.,. I rewrite the definition:

Definition 3.2.1. For o < I'y the theory RT., is given by all the axioms
of PA, induction axioms for L., and, for all v < 8 < a:

RT1) VsVt [Tg s =t < s =1t]
RT2) Vx [Sent.g(x) — (Tg(7x) < ~Tsx)]
RT3

VaVy [Sent<p(zvy) — (Tp(zvy) < Ts(z) vV T(y))]

)

) )

) (

) (2

RT5) VoVz [Sentg(Voz) — (Tp(Yox) > VTs(x[t/v]))]
)

(
(
(
(RT4) VaVy [Sentcg(z—y) = (Ta(z—y) < (Tp(x) = Ts(y)))]
( ;
(RT6) Vit [Senter(t") — (T3(T,t) <> Tyt)]

(RT7) VtVS < B [Sents5(t") — (Ts(Tst) <> Tpt’)]

We shall see that:

Theorem 3.2.1. RT_, is truth-definable in DT.

This result follows from a more general lemma.
Define a formula of Ly D (z):

DY (x) = Sentr(x)A(T(x)VEF (x))A=(T(z)AF(z)) = Sentr(x)A(F(z) +» =T (x)).

This is a condition of ‘strengthened determinate meaningfulness’, we shall
see later its link with D(x).

Lemma 3.2.1. Let Q be a theory over Ly which proves the following;:

(1) VsVt [T s=tT ¢ s =1 ] AVsVt [F(s=1) <> 5 #t']
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(ii) [DF(z) AD*(y)] = [DF(72) A DT (zvy) A DT (z—>y)];
(iii) [Sentr(Yvz) AVyD™ (z)[y/v]] — DT (Yvz);

(iv) D (z) = (T'(72) <> =T (2));

(v) D¥(zvy) = (T(zvy) < T(z) VT (y));

(vi) D¥(z—y) = (T(z—2y) © T(2) = T(y));

(vii) D*(Yoz) — (T(Yvz) < VyT'(z[y/v]));
(vili) Vt [T(Tz) <> T(t)] AVL [F(Tz) > F(t'))].

Then, if Q - Tz, (< «), then RT, is truth-definable in Q4.

Before illustrating the proof, let us explain the conditions: (i) and (viii)
are the axioms (KF1) and (KF2) of KF, i.e. respectively truth and fal-
sity of atomic sentences of Lpa and Lr; (ii) and (iii) stand for the strong
compositionality of the predicate DT and, moreover, (iv) — (vii) represent
compositionality of 7" for meaningful sentences. Lastly, TIz, (< «) denotes
the schema of transfinite induction up to « for formulae of L7, that is for
all 8 < a:

Ve(Vy < z ¢(y) — o(x)) — Vo < B(p(z)) for all ¢ € L.
Proof. Let h be a binary primitive function such that:

x, if z € Sentg and 8 < o

i@, B) = { "0=1" otherwise.

We write hg for h(z,3): for simplicity, the second argument becomes a
subscript. Intuitively, we have to interpret RT., in Q. The former has a
hierarchical language with several truth predicates ({7;}i<q), whereas the
language of Q has just one truth predicate, T'. For this reason we need a
function dependent from the index 3, like hg, that somehow acts as a filter
for the sentences by returning all and only the sentences belonging to the
language L. In other words, for each stage of the hierarchy we have an
effective method (a test) to determine whether a sentence belongs or not
to that stage, i.e. whether it contains at least one occurrence of the truth
predicate that "controls" the stage. If the test result over a sentence is
positive the function gives us the sentence itself.

14This lemma can be generalized to theories with a base theory that is not PA, in this
case condition (i) must be

Vi1, .o YVt [T(R(t1, .. t0)) <> R(t1 oo tn )AVEL, ... Vin [F(R(t1, ... ta)) <> —R(t1 ...

for each atomic R of the base theory language.
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Then, by using the primitive recursion theorem, we take another primi-
tive recursive function k such that:

a, if a € AtFml,;
"T'(k o hy (b)), if a="T.,b for b € Term;
="Tkb™, if a = —b;

k(a) :==< "TkbV Tke™, if a =bve;

TTkb = TkeT, if a = b—c;

Vo Tk(blz/"27])7, if a = Yab for x € Var;

T0=17", otherwise.

\

I am sloppy in the notation, for example k(7',b) means T'(k o h, (b)) and b
stands for the formula obtained by substituting the free variables in b with
the numerals of fresh variables. The operation expressed by the symbol o,
namely the composition between functions, is defined as usual.

The function k is defined along the inductive definition of formula. If its
argument is an atomic formula of the base language, then it gives as output
the formula itself. Moreover, k applies to sentences that might contains an
indexed truth predicate. In these cases the hierarchical index is transferred
from the truth predicate to the sentences said true, i.e. the sentence to
which the predicate applies by using the test h. Sentences resulting from the
application of k will be sentences of L7, in other words it holds the following:

x € Sentg — kx € Sentr  for each 8 < a.

So, the original sentences of {£;}i<, are transformed by k into sentences
of L. The next step is to prove that for each fixed § the transformed
sentences are meaningful in Q, in the strengthened sense expressed by D:

QF ¥y < B (Sent, (z) — DT (kz)). (3.2)

Let ¢(p) be the formula Sent,(x) — D (z). We have to prove ¢(v) for each
ordinal v up to 8, so a transfinite argument is required. Since 8 < a by
hypothesis we have Q F T, (8) and moreover ¢(v) € Fml,,., then:

QF VY (V8 < v ¢(8) = d(7)) = Vv < B(d(7)).

Thus, in order to prove (3.2) we just need to show that ¢ is progressive on
~: we suppose the claim holds up to v (I.H.) and by subinduction on the
complexity of the sentences we prove the claim for ~ itself. Let a be a code
of a sentence of L.

e a € AtSent
Since by definition ka = a, the thesis is D" (a). This follows immedi-
ately from (i):

Dt (a) & (TaV Fa) A—(Ta A Fa) < (aVa) A—(aAa).

(@)
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e a € AtSent,
a =Ts(t) with 6 <~. Thus ka ="T'(k o hs(t))". Then:
DYt (ka) < [T7T(kohs(t))"V FTT(kohs(t))7]
A [T T (k o hs(t))? vV ~F T (k o hs(t))7]
<:)> [T(kohs(t"))V F(kohs(t))]

(viii

A [=T(k o hs(t)) V ~F(k o hs(t))].

Now, we investigate the term k o hs(t"):

o

oy ), if t° € Sents; 1.
' "0 =17, otherwise. 2.

1. kohg(t”) = k(t"). The thesis Dt (k(t")) follows from I.H., since
t” € Sents and § < 7.

2. kohgs(t") =70 =17 The claim trivially follows by condition (i).

For the cases in which a is a propositional compound, we prove a more
general fact:
Dt (kz) <» DYTTki™ for all x € Sent,,. (3.3)

This is shown by:

DY (kz) & [TkxV Fkx] A [-Tkz V —Fkz]
& [TTTki 'V FTTki | A [~ Thi 'V ~F Tki )
& DTk

The intermediate step follows from an equivalent version of (viii):
V(T (Tnum(z)) <> T(x)).

As a consequence, (3.3) holds. I develop just one case, being the others
similar.

e a=7b

DT (k=b) = DY (=" Tkb") = D TkbT = D (kb) [S.LH.]

e a =bVc and a = b—c similarly follow by (3.3) and (ii).

e a=VYaxb
In this case we observe a more general fact for each y in Q:

D™ (kbly/x]) & D*TTk(b[j/27))" D”Tk(b[i?/rﬂ)j[y/x]z- 5
3.
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Then, we have

[S-LH] ¥y D" k(bly/x]) 2w vyD " ("Tk(b[#/ 2 7]) [y/x])

(:i D (Va™ Tk(blz/"2z)7)
= DF(kVab).

We have shown (3.2).

Now we can prove the claim of the truth-definability of RT., in Q, by
defining a new formula fg(x) for each f < « which is the truth-defining
formula of Tjg. We set 0g(z) to be Tk(x) and what we are going to show is
that 6g(x) is the formula of Lg such that

RT<a k¢ = QF Ty(¢) forall ¢ € Ly,
where Lo = Lo U {Ts}p<a and Ty is the translation defined in 2.4.1. So,
using the clauses (iv)—(viii) we show that Q proves the translated versions
of the axioms of RT .
e QF T4RT1)

Let t and s be closed terms of Lg.

Thesis: Tz(1Ts"s =t") & 7?5*(30 =1t)

Proof:

TH(Tg"s=t"):=05"s=1t"
g(ﬁs )7:55

0

=T =
. k(s =1t)
=Ts=1t"
k
=5 =t
(4)
7}: Ti(s =1).
e QF THRT2)
Assume 3 < a and x € Sent_g
Thesis: Ty(Ts(7x)) < Tz(~Tpz)
Proof:
Tg(T(ox)) = Op(ox)
0
=Tk(—
= Th(-a)

= T(- Thi")
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Now we observe that for (3.2) Dtkz holds since x € Sent.z. From
this by (3.3) and (ii) we also have D' (="Tkz™). Thus, we can apply
(iv):
T(="Tki7) <= —~T" Tk
(iv)
= —Tkx
(viii)

o —0s(x)

= “T5(Tp)

0

%: T(—Tpr).

e QF T4RT3)
Let x and y be sentences of L.z
Thesis: Ty(Ts(z V y)) & Ta(Tpx V Tay)
Proof:

Tg(Ts(x Vy)) := O5(zVy)

=Tk(zVy)
Os
= 7Tk Thy’

ﬁ T Tk VI ™ Tky"
v

Again, the step in which (v) is used is justified by the following argu-
ment:

x,y € Sent.g (3:2)> D+(k:x) and D+(I<:y) (3:3)>

DT Tki™ and DY Tky" (:)> DT Tk WV Tky™.
e QF 7;RT4) Analogous.
e QF T4RT5) Analogous.
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e QF T4RT6)
Let v < 8 < a and t a term such that ¢t° € Sent <.
Thesis: TH(T5(Tt)) < %'(Tyto)

To(T(T,1)) == 65(T3(T,1))
= Tk(Tp(T,1)
i=T"T(kohg(T,t))"
= T T(kT,t)"
=TT T (k o ht)™"
— T(k o ht’)

= T(kt")

e QF T4RT7) Analogous to (RT6): one can take an arbitrary § in place
of v and in the last steps put T'(kt") = f3(t") obtaining, thus, 7;;(T5to).

O]

Lemma 3.2.2. DT meets conditions (i)—(viii) and moreover DT  TI. (<
€0)-

Proof. As a preliminary remark I investigate the relation between
D(z) =T(z)V F(x)
and
D%t = Senty(2)A(T(z)VF(z))A~(T (z)AF(x)) = Senty(z)A(F(x) < —T(x)).
As a reminder, I write the axiom (DT9) using the abbreviation Fz for T—z:
Vz [Sentr(x) A D(z) — (F(z) <» —T(x))].

This means that in the system DT the third clause of D" is entailed from
the first and the second, so it can be dropped. That it to say:

DT F Va(Senty(x) A D(z) — D1 (x)).

And, trivially, the other direction holds as well. After this clarification is
immediate to observe:
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(i
(ii

DT7);

DT6

(iii

)

DT3), (DT4), (DT5);
)
)

)
3
Nej

(v

(vi

O
H
[y
N

Y
9
)

(vii

) (
) (
) (
(iv) (
) (
) (
) (DT12)
) (

(vii) (DT8).
Maybe the less immediate is (DT5), nevertheless axiom (DT5) entails con-
dition (ii) since

D(z) A D(y) = D(x) AT (z) = D(y)) & D(z=y).

Moreover, transfinite induction up to a for each a < ¢y can be established
in DT for all formulae of £p15. ]

From lemmata 3.2.1 and 3.2.2 immediately theorem 3.2.1 follows. Note
that the same holds for KF: RT, is truth-definable in KF. Furthermore,
neither DT| nor KF[ are enough to define the truth of RT.,,. This follows
from a result of non-conservatvity and from the fact that the notion of truth-
definability implies conservativity for truth-free theorems: any theory non
conservative for Lpa sentences over a theory Q is non truth-definable in Q.
This yields the following negative results follow:

DT I,KF [ £ RT<,.

Let us now investigate whether the reverse holds, namely is the truth
predicate of DT definable in a ramified theory of truth? The answer is
negative, that is the reverse fails as the following theorem states:

Theorem 3.2.2. If a < ¢, then
DT(KF) £ RT<q4.

Proof. Let a < ¢y. Suppose DT <X RT.,. From theorem 3.2.1 we have
RT.¢, = DT. By the transitivity of the relation of truth-definability from
RT<¢, = DT and DT <X RT., we get RT, = RT, for all & < €. This
is impossible as for 8 < v, RT., is not conservative over RT .z (indeed the

former proves the consistency of the latter) and, so, since o < €9, RT<¢, A
RT <.

15Cfr. Feferman [18], p. 212.
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Let o = €p. Again, for the sake of contradiction, suppose DT < RT.,,. By
definition of truth-definability there is a formula § € L., that defines the
truth predicate of DT in RT,, i.e.

RT<e, - To(DT1) A -+ A To(DT12).

By the theorem of finiteness of premises there exists a finite set of formulae
I' € RT.¢, such that:

I'F T3(DT1) A--- A To(DT12).

Take the maximum 8 < €y such that T occurs in I' U {#}. Formulae con-
taining this predicate belong to the language of the next hierarchical level:
I' € RT<p41. Hence:

RT <41 F To(DT1) A -+ A Tg(DT12),

that is DT = RTg41. But since S+ 1 < ¢ this possibility has been already
ruled out. O

In this case, relative truth-definability is one-way.
Relative truth-definability assigns to theories of ramified truth a precise
and well-delimitate role in intertheoretical relations:

e On the one hand, they serve as touchstone for type-free theories such
as KF and DT. Systems of ramified truth can be embedded into type-
free theories: those theories can ‘simulate’ all the truth predicates of
ramified theories up to a certain level. The higher is the level of the
Tarski’s hierarchy reached in a theory, the stronger is the theory itself,
e.g RT<¢, X DT, KF, whereas FS defines all the truth predicate of RT
up to wlb.

e On the other hand, ramified theories of truth cannot define the truth
predicate of a type-free theory even when much levels are included.
Furthermore, even if the type-free theory is taken in its weaker ver-
sion without induction on Lp-formulae thy could not express its truth

predicate:
DT [,KF | A RTq.

It is worth noting that this does not exclude other kinds of reduction
from type-free theories to ramified theories.

Hence, it seems that relative truth-definability is able to capture a difference
between ramified and type-free truth theories. For example the relative
interpretability of RT.,, in FS also holds in the converse direction, while
none of theories introduced above can define the truth if FS since no w-
consistent theory can define the truth of an w-inconsistent theory.

For a proof see Halbach [28], theorem 14.26 and corollary 14.27.
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DT and KF

After having seen DT and KF united in their relations with ramified theories
of truth, let us now delve how they are related to each other. Again I rewrite
the definition:

Definition 3.2.2. The system KF is given by all axioms of PAT and the
following axioms:

KF1) VsVt [TTs=t1 <+ s =t ] AVsVt [FTs=tV ¢35 #1t]

KF2) Vt [T(Tt) <> Tt ] AVt [F(Tt) < (T—t)]

KF3) Vz [Sentr(x) — (T'(-7x) < Tx)]

)
KF4) VaVy [Sentr(xVy) — (T'(zVy) <> T(x) VT(y))]
(

(
(
KF6) VaVy [Sentr(z—y) — (T(z—y) < T(mzVy))]
KF7) VaVy [Sentr(z—y) — (F(z—y) < F(oavy))]
(v )]
(v

(KF1)
(KF2) v
(KF3)
(KF4)
(KF5) VaVy [Sentr(zvy) — (F(zVy) <+ F(z) A F(y))]
(KF6)
(KF7)
(KF8)
(KF9) VoVa [Sentr(Yoz) — (F(Yoz) < 3tF(z[t/v]))]

)
KF8) VoVz [Sentr(Yvx) — (T'(Yvz) <> VET'(x[t/v])
)

With respect to the definition in chapter 1, axioms (KF6) and (KF7)
are added. They are redundant since — is definable by — and V in Strong
Kleene Logic, but this formulation will be useful in view of a comparison
with DT in which — is taken as a primitive connective. Apparently, DT and
KF are very different both for their axiomatizations and their background
motivations; but we shall see that at a closer look we find they are more
related than they appear. Leaving aside the philosophical ideas behind the
two systems — I shall come back to them later — let us focus on formal
obstacles to a possible reduction. It seems that there are essentially two of
them:

(i) The inner logic: SKL for KF and a variant of WKL for DT.

(ii) The relation between ‘to be true’ and ‘to be false’: in DT for sentences
satisfying D saying that x is not true is the same of saying that x
is false ((DT9)); whereas in KF ‘to be not true’ and ‘to be false’ are
deliberately kept separate, that is why axioms are split in two.

In order to bridge the first gap, Fujimoto builds a variant of KF, i.e. an
iterative compositional theory, whose axioms for compositionality are given
according to what he calls Feferman Logic, that is the variant of weak Kleene
Logic we have seen before. In this logic the conditional — cannot be defined
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in terms of = and V. The axioms that should be changed are (KF4), (KF6),
(KF7) and (KF9), that is respectively the axioms which govern the truth of
a disjunction, the truth and the falsity of a conditional and lastly the falsity
of a sentence of the form Vxb. The universal quantifier is interpreted as
infinitary conjunction (a weak Kleene one), thus a sentence like Vb is false
not only if b(x) is false for some z, but even if b(x) is either true or false for
all x.

Definition 3.2.3. The system FKF] is given by all axioms of PA and (KF1)
— (KF3), (KF5), (KF8) and:

(FKF4) Vavy [Sentr(zvy) = (T(zvy) < (T(x) AT(y) V (F(x) AT(y)) v
V(T(x) A F(y))))]

(FKF6) VaVy [Sentr(z—y) = (T(z—y) < (T(2) AT(y)) V F(x)))]
(FKFT7) VaVy [Sentr(z—2y) = (F(z—2y) < (T(z) A F(y)))]
(

(FKF9) YoVz [Sentp(Yvx) — (F(Yvzx) <> (VE(T(z[t/v]) V F(x[t/v])) A
A SE (z[t/v])))]

As usual, FKF is FKF] plus full induction for Lp.

This theory acts somehow as a bridge between the others: we shall show
that FKF and DT are equivalent, then that the truth of FKF is definable in
KF. FKF can play this role by virtue of two key features: it is an iterative
compositional theory (just like KF) and, moreover, shares with DT the ‘inner
logic’.

Theorem 3.2.3. DT (DTJ) and FKF + Cons (FKF[ 4 Cons) are identical

theories.

As a reminder, the axiom Cons is
Va [Sentr(x) — —(T'(z) A F(x))].

It says that no sentence is true and false, in other words it rejects truth-value
gluts. If we look at the alternative formulation of this axiom introduced by
Halbach!, i.e

Vz [Sentp(x) — (T'(-x) — T (z))]

it becomes immediately clear its similarity with (DT9). So, the presence of
Cons partially obviates the problem (ii), for this reason Cons is a key player
in the construction of a theory akin to KF but identical to DT.

7[28], p. 155.
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Proof. The proof is given by showing that all the axioms of one are provable
in the other. We shall see just some examples. Let us reason informally in
DT. In order to show DT I Cons, the strategy is to assume the negation of
Cons together with DT e get contradiction. Let z and y be (numeral of codes
of) sentences of L. If T'(z) A F(z) then D(x). For (DT9), F(x) < =T (z),
that is (T'(z) V F(z)) V ~(T'(z) A F(z)), which contradicts our assumption.
Thus DT + Cons. As further example we prove that FKF+Cons = (DT10).
Given any z, y € Senty if T(xVy) then (T(x) AT(y)) V (F(z) ANT(y)) V
(T'(z) A F(y)) for (FKF4). This entail T'(x) V T'(y). Conversely, assume
T(x)VT(y) and D(xzVy). From the second, by (FKF4) and (KF5), it follows
T(2Vy)V F(avy) & (T(2) AT(y))V (F(z) AT(1)V (T(2) AF(y) V (F(z)V
F(y)). But the last clause has to be dropped because as hypothesis we have
T(x) VvV T(y), thus we get T'(zVy).

O]

In order to prove that DT is truth-definable in KF, it is enough to show
that the relation holds between the same theories without T-induction. That
is because truth-definability has an important and technically useful prop-
erty:

Remark 3.2.1. Suppose Q is truth-definable in S. Then, Q plus full induc-
tion for Lq is truth-definable in S plus full induction for Lq.

As far as Q and S are truth theories over PA we have:
if QXS] then Q <S.

So, by exploiting this property we can restrict to show that DTJ is truth-
definable in KF[.

Theorem 3.2.4. DT[=< KFJ.

Proof. We provide a formula # which defines the truth of FKF[ + Cons in
KF[. First of all, we define a translation I in PA by using the recursion
theorem. For the seek of simplicity, let us assume that I acts on the codes
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of formulae. We write I for the representation of I.

Then define:

¢7

TIt,

TI_.'ta

19).

(Lo A Itpy A —~T=thg A = I=)1)
V(I =tho A Itpy A =Ipg A =1—hy)
V(Iho A T=apy A =I=thg A —1ehy),

I=pg AN T—=py A —Ipg A —Ie)q,

(Iho A Inpy A =T —pg A —~I—hy)
V(I=tho A =Ihy),

Ipo A I=ipy N ~I—po—Ihr,

Va (It A =),

Ve ((Ip A ~I=p) A (I A 1Y)
AJxI—p,

0,

if ¢ € AtFmlg;

if ¢ =T(t);

if ¢ = =T'(t);

if ¢ =

if ¢ = 1oV y;

if ¢ == (o V ¥1);
if ¢ =1 — ¥1;

if ¢ = —(vYo — ¥1);
if ¢ = Vi,

if ¢ = V),
otherwise.

O(z) =TIz N—TI-~x ANFI-x AN—Flzx.

O(z) is the truth-defining formula we are looking for. As we did for the
lemma 3.2.1, we have to show that KF| proves the translated version of the
axioms of FKF[ + Cons. We shall show some typical case:

o KF| F T3(KF1)

Let assume Tp(T"s=t7).

By definition of 7y we have (s = t). Note

that I = ¢ and Ty(¢) = ¢ when ¢ is an atomic sentence of the base
language. Thus:

To(TTs=t7") :=T"s=t"'N T s=t7 A Fa"s=t7 AN -F-a"s=t"
—=s5 =t As =t As =t As =t

(KF1)
os =t
= To(s" =1t").

We reason, quite informally, in KF| so we can use one of its axiom, also
(KF1), the translated version of which we are proving. The clause for
F' can be shown similarly.

o KF[ F T5(KF2)
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To(T(Tt)) := 6(T't)
:= TITt A —~TI~Tt A FI-Tt N ~FITt
= T(TIt) A=T(TI~t) A F(TI=t) A —F(TIt)

—= TIt' N=TI-t ANFI-t AN=FIt
(KF2)

=:0(t)
=: %(Tto).

In the same way it can be shown in KF| that T5(F(Tt)) <> To(Ft’).

o KFI F T7p(FKF4) Let z\Vy be (the code of) a sentence of L.

I(zvy) N =TIo(zvy) A FIo(zvy) A —FI(zVy)
[(Ix NIy AN —I-x A —I-y)V (I-x ATy A\ —Tx A —I-y)
V (Ix NIy NIz A —ly)]
ATz NIy A —Ix ATy
A F[I-x A I-y A =Tz A -1y
AN=F[(Ix ANy N—I-xzA—-I-y)V (I-x ATy A—Tz A\ —Iy)
V Iz AN I-y A —I-x A —Iy))
S [(TIx ANTIyANFI-x ANFI—-y)V (TI-x ANTIy A\ Flz A FI-y)

*

V(TIx NTI-y A FI-x A Fly)]
N[-TI—-x N —TI-yV —Flz AN —=FIy|
A[FI-x N FI-yV TIxV TIy]
A[(=FIx AN —=FIy AN -TI-x A -TI-y)
V (=FI-x AN-FIy AN —-TIx AN -TI-y)
V (=FIx AN—=FI-y AN -TI-x A\ —-TIy)).

The step (*) is justified by (KF3), (KF4), (KF5). In the second and
third clauses we must turn A in V because just one of those conditions
is enough to falsify (or to make not true) a conjunction. Now, we
observe that the the second and the third clauses are entailed from
the fourth and first, so they can be dropped. Then, modulo logical
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equivalence we get:

(TIz NTIy AN FI-xz AN FI-yA\N—FIx AN—FIyA—-TI-x AN —=TI-y)
V(TI-xANTIyNFlx ANFI-yAN—-FI-x AN —=FIyAN—-TIz N -TI-y)
V(TIe NTI-y AN FI-xz AN FIy AN —-Flz \N—FI-y\-TI-x A —-TIy)
=: (0(x) A O(y)) vV (0(—z) A O(y)) v (0(z) A O(=y))

= To((T(x) NT(y)) v (F(x) AT (y)) vV (T(x) A F(y)))-

o KF[t Ty(Cons) Let us prove that To(Tz AT—z) is not provable in KF[.

To(Tx ANTox) := (0(x) AO(—x))
= (TIx N-TI-x N FI-x N—-Flx
ANTI-~x AN=TIxz N Flx N —FI-z).

By shuffling the members we get:

(TIz N=TIz)N(-TI7x ANTI-z) N(Fl-x A—~FI-x) AN (-FIz AN Flz),

which is of course not provable in KF[, whose outer logic is classical.
O

From theorem 3.2.4 and remark 3.2.1, we get:
Theorem 3.2.5. DT is truth-definable in KF.

Although the result is unique, it is obtained in two distinct steps which
ought to be analysed individually.

- Equivalence between DT and FKF + Cons. There are no problems
about compositionality since they share the same inner logic. More-
over, for sentences satisfying D the underlying logic of DT is consistent
and complete, as the axiom (DT9) states. This easily allows the chance
of proving all the axioms of the former in the latter and wvice versa.

- Truth definability of FKF + Cons in KF. This is less unexpected since
KF and FKF 4 Cons differ to each other just for the evaluation schema.
In order to translate the latter in the former it is enough to build in KF
a function (/) which simulates compositional clauses of FKF. Secondly,
Cons is balanced by choosing a truth-defining formula 8 that forces a
true sentence to not be false and a non true sentence to be false.

The direction of the reduction (from DT to KF) is somehow natural: it
shows that theories with a weaker evaluation schema are reducible to those
with a stronger schema. What about the converse direction? Whether DT
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defines the truth of KF is an open problem. The solution might be achieved
by resolving one of the following:

Open problem. Is KF (KFJ[) truth-definable in FKF (FKF[) + Cons?

Open problem. Is PUTB (PUTBY) truth-definable in DT (DT[)?

In the second case, the relative truth definability of KF in DT would
follow by transitivity from the fact that

KF < PUTB!S,

We may wonder whether such reduction is desirable since the theories
at the stake are ultimately different in some respects, but a possible reduc-
tion might show that despite differences they do not embody incompatible
conceptions of truth.

3.2.2 Strength

At the end of 18], Feferman raised the question of the proof-theoretic strength
of DT, that he guessed to be the same as that of RA.,, namely Ramified
Analysis up to the ordinal «.

Feferman’s First Conjecture. DT = RA_,.

Although Feferman suggested a model-theoretic strategy for the proof,
Kentaro Fujimoto proved this conjecture by another, indirect, strategy: as
we have seen in the previous section, he has found an interpretation of RT .,
in DT and of DT in KF, thus confirming the guess.

Frequently, in order to analyse the strength of a theory of truth it is
related to other systems. As the following diagram shows, this is the case:

RT <, < DT < KF
RA<60 RA<60
lower bound upper bound

We have already proved the following:
Theorem 3.2.6. RT_, is truth-definable in DT.
Moreover, we know that:

Theorem 3.2.7. RT_., = RA_,, for each ordinal a.

8For a proof of this result see Halbach [27], p. 792.
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These theorems entail that RA., is the lower bound for the strength
of DT. This results confirms the relevance of ramified theories of truth as
touchstone for other theories: they are used to measure the strength of type-
free theories. As we have seen, this is done by investigating how many stages
of ramified truth can be defined in the type-free systems.

For the upper bound, there is an interpretation of DT in KF:

Theorem 3.2.8. DT is truth-definable in KF.
Moreover, it is well-known that:
Theorem 3.2.9. KF = RA_,.

These theorems entail that RA., is the upper bound for the strength of
DT.

As a conclusion the theory DT is proof-theoretically equivalent to RA<,
so that Feferman’s first conjecture about the proof-theoretical power of DT
is verified.

RA¢, is the system of ramified analysis up to €p, which is, roughly speak-
ing, a system with €y times iterated elementary comprehension and other
suitable axioms!?. The number €y, called Cantor’s ordinal, is the smallest
epsilon number. In mathematics, the collection of epsilon numbers is defined
by the property of transfinite numbers of being fixed points of an exponential
map:

€= w",
in which w is the smallest transfinite ordinal. As result, they are not reach-
able from 0 via a finite series of applications of addition, multiplication and
exponentiation. The least such ordinal is €y, which can be viewed as the
limit obtained by transfinite recursion of the kind:

w*

e =w" = sup{w,w’, w,.. .}

At any rate the relevance of this ordinal relies upon another factor: it is
considered the ordinal of PA since PA proves transfinite induction for any
ordinal up to €g. For this reason ¢y might be seen as a natural limit for the
number of iteration of the theory ACA of arithmetical comprehension. In
spite of this, stronger truth systems have been considered as well.

However, we are interested in the way in which the result has been ob-
tained more than in the result per se since the proof-theoretical strength of
DT has been established via relative interpretations. Indeed, relative truth-
definability is a tool to compare conceptual aspects of theories of truth, but
it turns out to be useful in order to establish relevant results even from
an instrumentalistic point of view. This seems to confirm the idea of the
methodological pluralism in reductions, especially between theories of truth
whose intrinsic duplicity allows different kinds of analysis.

9For more information on ramified analysis see Feferman [12].
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3.3 One more comparison

In the paper On a Russellian Paradox about Proposition and Truth, Can-
tini introduces a formal theory of truth related to Aczel’s Frege structures®”
and some common features can be noted between this theory and the the-
ory DT. Furthermore, Feferman in [18] after presenting the axioms of DT
observes a similarity between the axioms for D and T and the clauses for
proposition and truth in Frege structures and at the same time he stresses
several differences we shall see throughout this section. My purpose is to
investigate if, and to what extent, the theories PT and DT are comparable,
in this discussion the notion of Frege structure will be used as touchstone.
In the last part a new version of the theory DT is presented, which has some
specific features that make it a ‘bridge theory’ between the ones considered.
Then, the viability of a comparison via interpretation is investigated. Lastly,
philosophical points are stressed.

3.3.1 The theory PT

The genesis of the theory PT is characterized by a deep relation between the
logical notion of set and the semantical notions of truth and propositions:
the starting point are paradoxes concerning sets, in particular a version of
the Russell’s paradox that involves proposition and truth. Since we are
interested in PT as a theory of truth, less attention will be paid to the
complex background and the philosophical context, I refer to the quoted
paper for a more detailed survey. It suffices to say that PT is built as
framework to successfully deal with the Russell’s paradox.

PT comprises the axioms of combinatory logic with some further axioms.
The language contains the logical operators =, A, — and V. As usual we use
the dotted symbols =, A, —, V as individual constants representing them.
Moreover, there are the predicate symbols =, T', P for identity, truth and
proposition represented by the individual constants =, T', P. Moreover,
a map ¢ — [¢] can be defined so that it assigns to each formula of the
language a term [¢], called propositional object, with the same set of free
variables of the formula. Intuitively, this corresponds to the arithmetization
in a non-arithmetic contest: it associates a ‘name’, that is a term, to any
formula. Lastly, we define a propositional function as a function whose values
are propositions, that is to say f is a propositional function if and only if
va(P(fx)).

Note that below I adopt the infix notation unlike the original paper in
which a prefix notation is adopted, namely I write for example a—b instead
of —ab.

Definition 3.3.1. The system PT consists of all axioms of combinatory logic

20See Aczel [1].
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and the following axioms:

PT1) P([¢]) A (T([¢]) <> ¢) for each ¢ € AtFml,

PT11)P(a—b

J
H

— (

PT12)P(a—b) — (T'(a) — T'(b) — T'(a—b))
= (
P(b

PT14)P(a) A

PT2) T(a) = P(a)
PT3) P(a) — T([P(a)])
PT4) P([P(a)]) — P(a)
PT5) P([T(a)]) < P(a)
PT6) T([T(a)]) > T(a)
PT7) P(a) = (~T(a) — T(7a))
PT8) T(-a) — —T(a)
) P(7a) < P(a)
PT10)P(a) A (T(a) — P(b)) — P(a—b)
(
(
(
(
(

)
)

)
13)T
)
PT15)T(a/b) <> T(a) A T(b)

)

PT16)VzP(fx) +» P(Yf)
PTITT(YS) & Va(T(f2))

/\/\/\/\/\/\/\/\/;a/‘\/\/‘\/‘\/‘\/‘\/‘\/‘\
=)

The axioms are closely related with the logical schemata used by Aczel,
moreover there are axioms that regulate the relationship between the two
collections of propositions and truths, as an instance the axiom (PT2) states
that the former contains the latter as subset. In addition, (PT3) guarantees
that those claims about P that are true are internally true as well. Then,
there is a group of axioms representing the closure conditions for the pred-
icate P that I shall examine later. However, I can anticipate that just like
DT a strictly compositional interpretation of the logical operators is cho-
sen. Lastly, the axioms concerning T state how to evaluate the truth of
an atomic expression formed by a predicate and of a compound expression
built using logical operators. These are very natural axioms for truth since
they are nothing but the usual recursive clauses expressing the composi-
tional nature of the notion of truth restricted to P. Moreover, PT proves all

T-biconditionals: if ¢ is an arbitrary formula, then

PTF P([¢]) = (T([¢]) < ).
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Of course just the restricted version of the Tarskian schema can be derived,
but I have already supported the naturalness of this choice once this principle
is restricted with respect to the range of significance of the truth predicate.
These features make PT an interesting theory even adopting a philosophical
point of view towards truth theories. A more comprehensive analysis of
the axiomatization will be done by comparing it with DT in the following
subsection.

This theory is shown to be consistent by providing a model. The ground
universe is a combinatory algebra M, whose universe is M. In order to
give an interpretation of the two predicate ‘to be a proposition’ and ‘to be
a truth’, a pair X = (Xp, X1) of subsets of M is considered, by adopting
the same strategy of the Aczel’s construction. Among the possible pairs of
subsets of M we consider those satisfying the condition Xy C Xy. Let F
be the family of such pairs. On this family a binary order relation can be
defined:

X§Y{:>X0§Y'0/\Va6X0(aEX1<—>a€Y1),

and it can be proved that (F,<) is complete partial ordering?’. Then an
operator I' is defined: I'(X) = (T'0(X),'1(X)). T'o(X) is a collection of those
objects satisfying the following formula Ag(z, X):

JuIv [(x=u=v]ANu=wv)V
V(z=[PulANu e Xg) V
V(z=[TulANue X))V
V(iz=(ru)ANue Xohu¢ X;)V
V(z=(uvv)ANue XoAhNveXoAN(ue X1 Vve X))V
V(zx=(urhv)ANue XoghveXogANue Xy AveE X))V
Vie=u=v)AueXoAN(u¢g XiVve Xo)A(ug X1 Vve X))V
V (z = Yu AVy(uy € Xo) AVy(uy € X1)) V
V(z = Ju A Vy(uy € Xo) A Fy(uy € X1)) |.

The operator I' engenders two classes of objects that, intuitively, satisfy
the axioms of the theory: I'g(X) follows the axioms concerning P and it

2IThat is a partial ordering such that every chain has a least upper bound.
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clearly depends on X (the previous candidate for the set of propositions),
but in the case of implication it depends on X as well; on the other hand the
defining formula of I'1 (X') embodies the recursion clauses of truth. Moreover,
it can be observed that A;j(z, X) is built so that objects satisfying it at the
same time satisfy Ag(x, X), this means that if X; C X then I'; (X)) C T'g(X).
In other words, if X € F, then even I'(X) is so. Moreover I' turns out to
be monotone on the structure (F,<). This yields to the existence of fixed
points, i.e. sets X € F such that X = I'(X). Lastly, these fixed points are
proved to be models of PT, which is accordingly consistent.

3.3.2 Comparing DT and PT

This presentation reveals immediately some common feature with DT: the
choice of a range of significance for the predicate ‘to be true’ and the restric-
tion of all principles concerning truth to the condition of being in this domain.
Now let us have a look at the macroscopic dissimilarities and similarities be-
tween the described theory and DT in relation to the basic framework, the
predicates, the axiomatizations and the models.

Basic framework

The basic framework represents the first, immediate difference. DT is a
truth theory built by following the pattern described in the first chapter: the
language of arithmetic is extended by a predicate T for truth and suitable
axioms for T" are added to the arithmetical ones. In contrast, the framework
in which PT is built is the combinatory logic?2.

Let us now explain how this choice affects the thorny issue of the truth
bearers, i.e. the question of which kind of object should be considered as true
or false. For theories like DT the truth bearers are (numbers standing for)
sentences, a collection inductively defined starting from the atomic ones up to
the compound sentences. But, as said before, sentences are always sentences
of a particular language. Accordingly, the axioms reflect the behaviour of the
truth predicate with respect to that particular language with its predicates
and building rules for terms, formulae and sentences. And if something can
proved to be true in the system then it is a sentence of its language. In
other words there is a limit imposed by the particular linguistic framework
that cannot be transcended. This somewhat threatens the generality of the
axioms and of the whole theory.

Adopting the combinatory logic, a more general framework is obtained:
objects being true or not true are propositions and no more sentences of
a particular language. Sentences are a syntactical category defined by in-
duction on the construction of the formulae, namely a very well-specified

22 A formal system introduced by Haskell Curry in the 1920s.
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collection; whereas, propositions are a collection whose extension is not in-
ductively specified. They only have to meet some non-restrictive closure
conditions. Therefore, an axiomatic system like this lends itself well to a
good deal of interpretations: a specific language can be from time to time
added to the base language in order to obtain applied versions of the theory
PT with a specific interpretation. For example PT can be extended with a
predicate N for the set of natural numbers, constants for 0 and successor,
induction schema for N. Of course even a theory based on the combinatory
logic is not framework-independent, but the framework itself it is more gen-
eral and so less constraining. As a consequence, the value of the proposal of
taking the combinatory logic as generalized syntax for truth theories is the
chance of a more general interpretation.

Moreover, in a combinatory framework the application of a term to itself
is allowed, so the possibility of the self-reference is guaranteed from the
structure itself.

Predicates

In the system PT the predicate T isolates among the propositions those
which are truths and it trivially corresponds to the truth predicate T of
DT, of course with the proviso that the object which truth is attributed are
different.

What about the other predicates? Let us see to what extent the predicate
P, that is the predicate ‘to be a proposition’, can be related to D, ‘to be a
determinate and meaningful sentence’. Exactly as for the truth predicates, P
and D are properties of different objects: P is applied to objects representing
propositions in a combinatory framework, while the extension of D is a set
of natural numbers representing sentences of the language of PA with the
truth predicate. Apart from that, their intended interpretations are closer
than they appear. Feferman holds that the extension of D coincides with
the collection of those sentences that are either true or false. Although in
the works considered it is not explicitly specified how to understand the
intension of the predicate ‘to be a proposition’, it is widely accepted that
being a proposition is something related with the property of being either
true or false, or the property of being a truth-value. That is why the axioms
of the two theories can be easily compared.

Another point must be stressed: in the system PT the predicate ‘to be a
proposition’ is taken as primitive. This is not the case for D: it is explicitly
defined in terms of T'. That is why, more correctly, PT ought to be considered
a theory of truth and propositions rather than just a truth theory.
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Axiomatizations

Focusing on the axiomatic systems it is evident to what extent some essential
differences between the axioms of DT and the principles for propositions and
truth in Frege structures are balanced by PT.

Let us consider the following remarks:

1. As said in section 3.1.1, the closure conditions for D are assumed to
be invertible. However, this is not the case for the predicate ‘to be a
proposition’ used in Aczel [1]. In order to have a perfect correspondence
the axioms (DT3)—(DT6) should be weakened by replacing <+’ by ‘—’.
Nevertheless, the axioms of PT imply a strict compositionality: not
only the predicate P is closed under the propositional operations and
quantifiers but, in the opposite direction, a compound expression is a
proposition only if all its constituents are so. As said before this choice
is reflected in the interpretations of the logical operators, especially
disjunction and existential quantifier.

It is worth focusing again on the axioms concerning implication, whose
formulations are non-standard, similarly to Aczel’s treatment of ‘—’
in Frege structures. A standard formulation would be D(a—b) <+
D(a) N D(b) for DT and P(a—b) <> P(a) A P(b) for PT. However,
the chosen formulations can be justified in terms of deduction and
reasoning under assumptions: the determinateness (or the property
of being a proposition) of the consequent holds under the hypothesis
that the antecedent is true. Moreover, even if the antecedent is not
true provided that it is determinate (or it is a proposition) then the
conditional is determinate (a proposition) whatever the consequent.

2. Although the closure condition for D and P are similar, it must be
noted the way in which the theories formulate the condition for an
expression of implicative form to be a proposition. The axiom (PT11)
does not correspond to the matching direction in the axiom (DT5) and
the latter is likely to be underivable in PT.

In spite of this, if we look at the model we can see that the formula
P(a—b) — P(a) A (T(a) — P(b)) is true in the model. In order to
justify the last statement, let us deeper analyse the formulae Ag(z, X)
and Aj(x, X). They ‘translate’ syntactical claims into information to
fill the extensions of the sets of truths and propositions. In the set
of propositions (I'g(X)) we put all the objects x that satisfy the for-
mula Ap(x, X), namely: all the expressions of equational form, all
the expressions of the form T'[u], —u, uVv, uAv when u and v are
already propositions, all the expressions of the form u—v when wu is
a proposition and v is a proposition provided that u is a truth and,
lastly, all the expressions Yu and Ju when v is a propositional func-
tion and uy is a proposition for all objects y. Regarding the axiom
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(PT11), there is no trace in the formula Ag(z, X) of a discrepancy
with respect to the other clauses: in the inductive process all of them
behave like biconditionals. As a consequence, if we considered the for-
mula P(a—b) <> P(a) A (T'(a) — P(b)) as axiom instead of (PT10)
and (PT11) the resulting theory would be still consistent by the same
model. An interesting point would be to find a countermodel, i.e. a
model of PT in which P(a—b) — P(a) A (T'(a) — P(b)) is not true.

. Among the Aczel’s principles there are no conditions for atomic propo-
sitions like T ¢7, so the axioms (DT2) and (DT8) do not match any-
thing. Unlike Aczel’s clauses, PT contains axioms for proposition of
the kind ‘a is true’ just like (DT2) and (DT8), they are, respectively,
(PT5) and (PT6).

. As far as the axioms for T' are concerned, an evident correspondence
can be found between the second group of axioms of DT, the logi-
cal schemata that inductively define the collections of proposition and
truth in Aczel and the axioms for T" in PT. All the principles concern-
ing truth are restricted so that they hold just for those object that
are provable to be propositions or determinate sentences. In any case,
the truth predicate, for objects in its range of significance, satisfies
the usual recursive defining conditions, namely the standard Tarski
conditions.

However, we shall see in a while that differences of formulations still
remain and those represent an obstacle to an interpretation.

. It does not matter that different groups of connectives are taken as
primitive, since the principles concerning the missing ones are easily
derivable. For example PT proves:

P(avb) < P(a) A P(b),

P(a) A P(b) — (T(avb) < T(a) v T(b)).

Models

In the previous section a standard model for DT has been described. As
a reminder, this construction is broadly composed of two steps: first, a 2-
valued standard model of PA is expanded to a 3-valued model by using a
Krikpe-style construction in which the interpretation of the truth predicate
is given by two sets, the extension and the antiextension. The assignment
is fixed according the Feferman Logic, i.e. the inner logic of DT. Then, the
least fixed point model is converted into a 2-valued model by giving T" a
classical interpretation again.
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The first, trivial difference between this structure and the one built as a
model of PT is the ground universe: a model for DT is obtained by expand-
ing a standard model IN of PA with a suitable interpretation of the truth
predicate, while the model for PT has an extensional combinatory algebra
as base structure. Secondly, as said before, in PT the predicate ‘to be a
proposition’ is a primitive predicate and it requires a suitable interpretation
on the semantical level. This must be taken into account in the construc-
tion of a model for a theory of truth and propositions. In this regard, an
interesting aspect shared by the PT’s model and the Frege structures is the
simultaneity in the generations of the collections of propositions and truths:
the clauses are entangled (e.g. in the case of implication) and this requires
an inductive definition that generates the propositions and simultaneously
gives conditions for their truth. Note that also in the case of a model for DT
there are two collections to fill (the extension and antiextension of the truth
predicate), however, the inductive step is independent for each of them, that
is why a standard monotone inductive definition is enough.

3.3.3 Obstacles to a reduction

Beside a comparison obtained by comparing immediate features, one may
wonder whether the theories are comparable by using one of the tools we
have seen in the second chapter. Comparing DT and PT it seems that the
most suitable tool is relative interpretability since the non-logical symbols of
DT may have a natural possible definition in PT. In order to show that a
theory S is relatively interpretable in T we need a possible definition for each
non-logical symbol of Ls in L1 and, moreover, we need a primitive recursive
translation function mapping the formulae of Lg in formulae of L1 with the
following requirements: the translation function should preserve the logical
structure of the formulae, relativize all the quantifiers of S-theorems and
replace any non-logical symbol of Lg with its possible definition. Then, S is
relatively interpretable in T if for each formula of Lg if S proves it, T proves
its translation.

However, interpreting directly DT in PT or vice versa is problematic be-
cause of the differences in the basic framework and the underlying logic. For
this reason, I consider an applicative variant of DT, DT¢, whose quantifiers
range over the same unspecified objects of PT.

A bridge theory

I reformulate DT taking as base theory the combinatory logic; this new
version of the theory is called ‘applicative’ since the binary function of ap-
plication has a central role in such a framework. Terms are generated from
variables and individual constants via application and formulae in the usual
way from atoms. As for PT I assume the base theory to be extended with
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a predicate N for the set of natural numbers, constants for 0, successor,
predecessor and conditional on N, the induction schema for natural num-
bers. Moreover, the language contains primitive recursive representations for
logical operators and predicates; as usual they are written with the dotted
notation. The atoms of the base language, Ly, are of the form ¢t = s or
N(t). Accordingly, the axioms of DT should be modified in a suitable way,
especially those who explicitly refer to the base theory.

Beside the base theory, another main difference between DT and PT is
the treatment of the predicates D and P: the former is a defined predicate
while the latter is a primitive one. This affects the model-theoretic part of
the theories. The attempt of building a theory for filling the gap between PT
and DT can follow two different paths. On the one hand, the basic idea of
PT about the role of propositions can be totally accepted. This would imply
a formulation of DT in which the predicate D is ‘replaced’ by the predicate
P, to be a proposition, considered as a primitive predicate. The resulting
theory would be a theory extremely close to PT. Nevertheless, I believe that
this kind of modification would be too artificial and would misrepresent the
underlying conception of the theory of determinate truth. To ensure that
the resulting theory is just a variant of the source theory any changes should
not distort the content of the theory and a simple change of base theory
does not. So, in the spirit of DT, even in the applicative variant the domain
of the truth predicate retains its property of being explicitly defined. In
this case the ‘bridge theory’ would be just the axiom system of DT with
the combinatory logic as base theory. I call this variant DT, ¢ standing for
combinatory (logic). It is formulated as follows:

Definition 3.3.2. The system DT€ consists of all axioms of combinatory
logic and the following axioms:

D([¢]) for each ¢ € AtFmlg,

D([T'(a)]) < Df(a)

D(7a) < D(a)

D(aVb) < D(a) A D(b)

D(a—b) <+ D(a) A (T(a) — D(b))
(

D(Yf) +> VaD(fx)

(DT7) T([¢]) <+ ¢ for each ¢ € AtFmlg,
(DT?8) D(a) = (T([T(a)]) < T(a))
(DT9) D(a) — (T(7a) < -T(a))
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(DT°10)D(aVb) — (T(aVb) < T(a) vV T(b))
(DT°11)D(a—b) — (T(a—b) < (T(a) — T(b)))
(DT12)D(Vf) = T(Vf) <> V(T (fz))

In DT the axioms (DT1) and (DT7) refer explicitly to the base theory,
the former stating that all the atomic sentences of the base theory are de-
terminate and the latter stating how to evaluate the truth of a formula of
the base language. The combinatory logic comprises the standard equational
logic, namely its atomic sentences have either the form ¢ = s where ¢ and
s are terms of the language or N(t), where N is the predicate for natural
numbers. Accordingly, the original axioms are translated into (DT¢1) and
(DT*7). Except from this, the closure conditions for D and T have been left
unchanged.

Steps toward an interpretation

Before dealing with the truth-theoretical part of the theories (which is the one
we are interested in), I shall rigorously define how a relative interpretation
iota between generic theories in a combinatory framework is built.

The set of terms is defined inductively as follows: variables and constants
are terms and the only terms constructor is the application. In a natural
way we assume that:

In the base language, without the truth predicate, the only descriptive
symbols are = and N. This two predicate are translated by themselves,
namely:

Compound formulae are generated inductively from atoms by propositional
operators and quantifiers. The logical structure of the formulae must be
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preserved, so for all formulae ¢ and v of the source theory:

U=0) = —u(e),
UPVY) = () V (1)),
WP A1) = (@) A u(eh),

UP = ) = (D) = u(¥).

As mentioned before, the axioms of the two theories range on the same
object. Accordingly, no relativization on quantifiers is needed: ¢(Vzy) :=
V.

In general the dotted symbols are individual constants representing pred-
icates or logical operators, accordingly they are translated by themselves,
except from T, P and D that being mentioned occurrences of the match-
ing predicate must be uniformly translated with the constant represent-
ing the defining formula of the predicates, namely if «(T'(z)) := 6(z) then
UT(2) = 0(x).

It still remains to establish how the translation function acts on the the
truth predicate and the predicate representing its domain. Having done this
we shall wonder whether a reduction between the theories DT¢ and PT can
be established. As we shall see in a while, it seems to me that in both cases
there is some trouble. I shall deal with the two questions separately, just
focusing my attention on the truth-theoretical part, i.e. the axioms displayed
in the definition of the theories, since I assume that in the other respects the
functioning of the translation function ¢ is defined as above.

Is DTC interpretable in PT?

We need a possible definition for the non-logical symbols 7', the truth pred-
icate of DT¢ and D, namely respectively two formulae §(z) and d(z) in Lpt
such that PT proves the following sentences:

§(fz = y])

5([0(a)]) > 0(a)
6(-a) < 6(a)
d(a\b) < d(a) A 5(b)
d(a=b) > d(a) A (B(a) — (b))
0(Yf) <> Vzé(fx)
lz=yl) o=y

(

d(a) = (0({8(a)]) > 6(a))
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d(a) = (6(a) < —6(a))
d(avb) — (6(avd) < 6(a) v 0(b))

(
(
d(a=b) — (6(a=b) < (6(a) — 0(b)))
O(Vf) = 0(Yf) < Va(0(fz))

The most natural and immediate choices for #(z) and 6(x) seem to be re-
spectively, T" — the truth predicate of PT— and P. Henceforth, when the
context creates ambiguity I shall write 77 for the truth predicate of DT¢ and
Ty for the truth predicate of PT.

However, there is a first, serious, problem about that: D is not a primitive
symbol of the language and, rigourously speaking, in a relative interpreta-
tion we do not need a possible definition for it. In the theory DT¢ D is
defined in terms of T, so if there is a formula 6(x) of Lpt which explicitly
defines T'(z) then as possible definition for D we should simply take the
formula 6(x) := 0(x) V 0(—-x). Moreover, we are forced to do this because
the translation function should uniformly substitute all the occurrences of
the truth predicate with 6(z), even the ones ‘hidden’ in D, as far as D(z) is
just an abbreviation for T'(x) V T'(—z). As a result, if we choose the simplest
translation for the truth predicate, namely:

U(Ti(t)) = 0(t) == Ta(u(t))

then the compulsory possible definition for D must be:

WD) = 3(t) = 0(t) V 0(=t) = To(u(t)) V To(u(1)).

If we look at the definition of relative interpretation® we can observe

that conditions (i)—(vi) are fulfilled; so the problem whether ¢ is a relative
interpretation of PT in DT¢ is simply reduced to the following:

Problem I For all formulae ¢ in LpTe, does it hold that:
DTk ¢ = PT F u(¢)?

An immediate problem related to the definition of D arises: P is a prim-
itive predicate and despite T(a) V T2(—a) — P(a) holds in PT the reverse it
is not entailed by the axioms. Therefore we are not able to use the axioms of
PT in the proofs of the translated axioms. The same holds for all the axioms,
accordingly ¢, if defined as before, cannot be a relative interpretation from
DT to PT, unless a prove of P(a) — T(a) V T>(—a) is found.

It is not excluded that choosing a less obvious definition of 77 a successful
relative interpretation can be built. This remains an open issue. At any rate,
I suspect that there would be a further problem because of the differences
in the formulation of the axioms (DT°5) and (PT11) mentioned in the point
3. of the comparison between axiomatizations.

23See Definition 2.2.6 on page 38.
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Is PT interpretable in DT¢?

In this case we do not encounter difficulties in establishing the definitions:
since P is a primitive predicate, namely in all respects a descriptive symbol
of the language of PT, nothing prevents us to take as a possible definition
for it precisely the predicate D, as follows:

UTa(t)) = 0(t) == T (u(1)),

W(P(t)) :=0(t) vV O(t) := Ty (u(t) V Ti(e(t)) := D((t)).

In this way, the gap between P and D is, even though artificially, bridged.
Again we wonder whether PT is interpretable in DT¢ via ¢

Problem II For all formulae ¢ in LpT, does it hold that:
PTE@=DTF (p)?

As usual this is verified by showing whether this hold when ¢ is an axiom
of PT. While the translations of the axioms stating the closure condition of
P are easily provable in DT¢, a first obstacle is the formulation of the truth
axioms. For example, the axioms (PT7) and (PT8) are stronger than (DT°9).
So, does it hold that DT¢ I +(PT8)? It seems to me that in DT¢ only the
corresponding rule can be proved, i.e.:

DTt «(Ta(—a)) = DT F o(—Tx(a)),
which is a weaker claim than:
DTk «(To(—a) — —T5(a)).

This is the case for axioms (PT6), (PT13), (PT15) and (PT17).

Another immediate obstacle is the fact that DT¢ does not contain equiv-
alent axioms for (PT3) and (PT4). Furthermore, their translations, i.e re-
spectively D(a) — T1([D(a)]) and D([D(a)]) — D(a), are likely to be un-
derivable in DT. However, I suspect they can be added as axioms to DT¢
with the proviso that they might be redundant.

To sum up in both cases there are some obstacles to a reduction between
these two theories when the reduction itself is carried out by using a nat-
ural and immediate interpretation function which translates the descriptive
symbols of the source theory preserving their roles. However, as seen before,
sometimes interpretation results are obtained by building less trivial and ad
hoc translation functions. It is not excluded that this can be done for DT
and PT as well.
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3.3.4 Philosophical remarks

I take this comparison as a further example of the fact that a meta-theoretical
analysis between theories of truth can stimulate a purely philosophical debate
about the involved thoeries. Even the negative results and the obstacles can
be starting points for philosophical observations.

The first remark is related to the basic framework. I have already em-
phasized that the value of choosing the combinatory logic as general syntax
is the greater generality. A further confirmation of this feature derives from
a reflection about how the quantifiers are treated in the interpretation. Sup-
pose to interpret directly DT in PT and wice versa. I want to stress that
for the former an unrestricted interpretation is enough while for the latter
a relativization of quantifiers is needed. Usually in a relative interpretation
the relativization of quantifier is required in order to preserve the provability
of the formulae of the source theory in the target theory: reducing S to T,
whatever is S-provable about S-objects is translated into something prov-
able in T about the matching T-objects, that are a subset of the domain of
T isolated by a relativizing formula. In the axioms of DT the quantifiers
range over sentences. How should they be translated in order to be provable
in PT? The objects of DT are natural numbers and the set of sentences in
DT is suitable subset of this domain, while a combinatory universe is based
on an abstract notion of object, whose nature is irrelevant, the central no-
tions being the ones of application and combinator. This shows the elegance
of a combinatory setting: it allows a multiplicity of interpretations so that
whatever is provable in DT for specific objects, in PT is provable for all the
objects. Accordingly, in the translation of the formulae quantifiers shouldn’t
be restricted. On the other hand, if we wanted to interpret PT in DT then
we would restrict the quantifiers and the relativizing formula would be the
formula that defines the set of sentences. This shows to what extent a truth
theory with a combinatory framework is more general than another theory
with the usual arithmetical framework.

Moreover, I claimed that a comparison between truth systems can shed
light on the underlying notions of truth. In this case, what do we learn about
them? If, in an axiomatic setting, the predicates are defined by providing
rules (i.e. axioms) for their behaviour, then it is easy to see that the two
theories describe the ‘same’ notion of truth based on the Russellian idea
of the range of significance: all the desirable principles concerning truth
(disquotationality, compositionality, completeness, coherence) are preserved
and restricted to objects that are in the domain of truth predicate. The value
of this choice stands in the fact that it meets the philosophical desiderata
partially expressed in Leitgeb’s criteria and, at the same time, it wards off
the risk of inconsistency.

This is what they share. However, the comparison has shown some dif-
ferences between the theories and, accordingly, some difficulties in the inter-
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pretation. I want now to point out that the difference between the treatment
of P and D seems to be considerable from a philosophical point of view as
well. In many respects, the two predicates can be considered similar given
that they share their interpretation and their role with respect to the truth
predicate. Nevertheless, a fundamental difference still remains: P is a prim-
itive predicate and this means that the notion of truth which PT relies on
is deeply related with the notion of proposition. This is an interesting point
since the notion of proposition is anything but marginal and it is philosoph-
ically laden, at least as much as the notion of truth.

One may wonder whether it is worth complicating the picture by intro-
ducing another inhabitant in a theory of truth. The answer is by no means
trivial because, as I shall explain, the choice of taking as a domain of the
truth predicate another predicate totally independent from T is, in some
respects, more justifiable than the Feferman’s one. This is due to a sort of
circularity: on the one hand, in the axiomatic system DT the conditions on
D are prior to those on T" up to the point that each formula ¢, (z) expressing
a principle about truth is subordinate to D: Vz(D(x) — ¢,(x)). On the
other hand, the interpretation reflects an opposite trend: the predicate ‘to
be true’ is the first and the only in receiving an extension. In other words,
first, in an effective way, we establish which sentences of the language are
true and then, since D is defined in terms of T', we use this information in
order to give D an extension and establish which sentences are meaningfully
determinate. This circularity is avoided once the truth predicate and its
domain are taken as separate, like in PT. In this case the two sets simul-
taneously receive an extension: the inductive process generates the class of
propositions and, at the same time, gives conditions for their truth?4.

There is another point related with the issue of circularity: a pretended
trivialization of the concept of range of significance for a predicate if explicitly
defined in terms of the predicate itself. Compare the following answers to
the question: what is the domain of the predicate P?

(i) a set of objects for which it makes sense to say whether they satisfy P
or not.

(ii) a set of objects that actually satisfy P or not.

In the first case there must be a choice in the isolation of the set, whereas
the second one is a somewhat redundant statement. Let me resort to simpler
example: consider the predicate ‘to be transitive’ instead of the predicate ‘to
be true’, the universe being the set of the ‘linguistic expressions’ or ‘parts

24 Another route is described by Feferman in [18]: to build a theory of (determinate)
meaningfulness followed by a theory of truth. From a semantical point of view this would
imply that, in a first stage, the set of sentences that are meaningful and have determinate
truth value is isolated and, then, the truth predicate is applied just to terms standing for
those sentences.
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of speech’. We cannot say whether an article is transitive or not, so it
makes sense to isolate a subset of the universe that acts as domain for the
predicate. The obvious choice is the sets of verbs: we can meaningfully apply
this predicate just to some objects, the verbs, which constitute its domain.
This means that Tr(a) is true or false only when a is a verb, otherwise it is
not defined. So, if something is transitive or intransitive then it is a verb.
On the other hand, the set of verbs contains (all and) only those objects
that are transitive or intransitive. By extensionality, the two set coincide:
the domain of the predicate ‘to be transitive’ is the set of verbs and, equally,
the set of those object that are transitive or intransitive. However, from an
intensional point of view there is a remarkable difference. While the former
gives us a defining formula for the domain and, accordingly, a characteristic
function (z is in the domain of the predicate if and only if is it a verb),
the latter is merely an analytic statement (in a Kantian sense): no further
information is given since it is trivially true that each predicate has in its
domain all and only the object for which it is true or false that they satisfy
the predicate itself. This does not help at all in the isolation of the domain.
Nevertheless, even if an identification of (i) and (ii) in the natural language
cannot be avoided, this does not hold in a formal language if not deliberately
established. What about the domain of the truth predicate? There are two
possibilities:

(1) the set of propositions, the set of meaningful and determinate sentences
and so on.

(ii) the set of those sentences that are either true or false.

In the first case the set representing the domain is defined by a formula,
D(z) or P(z), which is not better specified. In the second, this formula is
explicitly defined as T'(x) V F(z). Although the fact that (ii) = (i) should be
accepted, the reverse can be omitted and the circularity avoided. The case
of PT shows that isolating a domain by an undefined predicate suffices to
avoid paradoxes, without commitments with the definition of this predicate.
The problem is that another primitive predicate should be introduced. As
said before, the choice is not trivial since one can either stake his all on
the truth predicate, but incurring in the difficulties seen before, or resort to
other notions transcending the bounds of a truth theory.

All things considered, although the theories are very similar both in the
philosophical motivations and in the axiomatizations, the difference in the
treatment of P and D represents a remarkable hindrance when one tries to
interpret one theory in the other. In particular, if the predicate is a primitive
one it can be defined in the other theory assuring that it becomes dependent
on the possible definition of the truth predicate. Nevertheless, there is no
way to use the undefined predicate as a possible definition for the defined one.
Since the choice of taking D as primitive or not affects both the technical
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formulation and the philosophical assessment of the theory, it might be worth
investigating a variant of DT in which D is a primitive predicate. If D and
T were taken separately so that D(a) - T'(a) V F(a), the resulting theory
would be a theory extremely close to PT and a model for it would be very
similar to the one built by Cantini.
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Conclusion

It can be useful to reassert the underlying question of the whole work: a
philosophical assessment of the metatheoretical investigation in the domain
of axiomatic theories of truth. One of the main advantage in dealing with
axiomatic theories is the chance to compare them by using well-known tools
and this possibility has been widely explored in the literature. The aim of
this work was to submit this practice to a philosophical analysis underlining
motivations, results and open issues always bearing in mind throughout the
discussion the underlying perspective: an interaction between logical meth-
ods and philosophical issues.

The starting point of this work has been a characterization of the ax-
iomatic approach toward truth as a possible solution to semantical paradoxes
like the Liar one. The problem of comparing truth theories has been, then,
introduced by means of a short analysis of the notion of reduction between
theories in general followed by the central issues: what does it happens when
truth theories are subject to reduction? Which are, if any, the philosophi-
cal side effects? The theoretical analysis has been in turn followed by the
introduction of a case study, namely an example of how a theory of truth,
DT for determinate truth, is compared with other theories. I believe that
the study of this theory is prominent for its own sake as well as far as DT is
one of the most recent and promising truth theories for at least two reasons:
its proof-theory has been investigated with new tools, like truth-definability,
with interesting outcomes and, moreover, DT relies upon a natural and co-
herent philosophical stance towards truth based of the isolation of a range
of significance for the truth predicate.

Turning our attention on what came out from this investigation, there
are at least two points I hope to have emphasized both from a theoretical
point of view and by providing a case study.

First: whatever approach one adopts towards axiomatic theories of truth,
metatheoretical inquiry, i.e. comparing them from wvarious points of view,
is an essential tool. Axiomatic theories of truth can be compared to each
other and with other theories, like the base theory or second-order theories
of arithmetic. From this investigation, it turns out that certain axiomatic
theories of truth are reducible to certain others. A comparison between truth
theories can tell us something more about the conception of truth behind
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them and provide an answer to important questions; for example one can
prove the consistency of a theory of truth by showing that it is reducible to
another theory which is known to be consistent.

Several important results have been obtained comparing truth theories
by their proof-theoretic strength, that is comparing them according to con-
sequences (theorems) they prove. In order to determinate their strength,
truth theories have been related in terms of proof-theoretic reducibility to
subsystems of second-order arithmetic, whose strength is well-known. Be-
hind this stance there is a specific aim: truth predicate added to a theory
can increase its deductive power and, moreover, crucial principles required
by the theory can be superseded by truth theoretic axioms. In this way,
one can develop comprehensive parts of mathematic in axiomatic theories of
truth, showing that the notion of truth can play a role in the foundations of
mathematics. In order to pursue this instrumentalistic approach it is enough
to consider only the arithmetical, namely truth-free, consequences of truth
theories. However, the set of truth-free sentences of a truth theory does not
determinate univocally the theory itself; indeed truth theories which embody
different view of truth can share the same arithmetic consequences. There-
fore, if one adopts a more philosophical approach, preferring to investigate
conceptual aspects of truth, then it might be important to consider the en-
tire truth theory including theorems with the truth predicate. To this aim,
other methods of reduction must be employed, like different kinds of relative
interpretability such as relative truth-definability. From a purely philosoph-
ical point of view, reductions between truth systems can tell us something
about the compatibility of the underlying notion of truth and contribute to
the philosophical debate about it.

Secondly: the philosophical debate about reduction between formal sys-
tems can benefit from this kind of study as well. That is to say, the behaviour
of truth theories once submitted to reduction can shed light on the larger
problem of the comparison between theories. There are many different open
issues about this theme, in the second chapter we have just pointed out three
of them:

e The dispute about the priority between notions of reducibil-
ity. Various methods to explain inter-theoretical relations have been
picked out and, moreover, they are not always equivalent or compara-
ble. The most general and widely used notions of reducibility between
theories are proof-theoretic reduction and relative interpretation (to-
gether with their variants and subtypes). As a reminder, we repeat
an intuitive definition of these notions: assume that T and S are de-
ductive systems formulated in the languages L7 and Lg, respectively.
Informally, a relative interpretation of S in T is a translation of Lg
in L7 that preserves the logical structure of the formulae, such that
if S proves a formula, T proves its translation. Equally roughly, the
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system S is proof-theoretically reducible to T if and only if there is
an effective method to transform every proof of S into a proof of the
same theorem in T, and this is established in a third system or in T
itself. The Niebergall-Feferman dispute?® concerns those notions of
reducibility: Niebergall questions that proof-theoretical reducibility is
a generally acceptable reducibility concept while, in his opinion, rel-
ative interpretability is so and, on the other hand, Feferman argues
proof-theoretical reducibility to be the prime candidate for a general
relation of reducibility between systems. Proposal: I argue in favour
of a methodological pluralism. Which notion of reducibility is appro-
priate depends on the purpose of the comparison and the employment
of a notion rather than the other might give unexpected and relevant
results. In this respect, a sort of ‘pragmatism’ should be pursued in
the choice of tools and methods. Considerations of epistemological and
philosophical character ought to be postponed, the priority being the
effective use of a wide range of technical instruments. This may ap-
ply in general, however, the world of axiomatic theories of truth is a
field where philosophy and logic are deeply interwoven and, as a conse-
quence, the necessity of not being an hindrance to each other becomes
remarkably urgent.

e Philosophical relevance of reduction results. Hofweber raised
the issue of the philosophical relevance of reductions. Proposal: 1
argue the feature that makes reduction between truth theory philo-
sophically relevant is a sort of adherence between axiomatizations and
their objects. The conception of truth behind a truth theory it is not
something separate from the theory itself; it is rather embodied in the
axiom system up to the point that these two aspect (axiomatization
and stance toward truth) are indivisible. That is why every variation
operated on the axioms (extensions, comparisons, translations and so
on) can be ‘read’ from a conceptual point of view. This insight can
be useful in general since the criterion of the adherence can be used as
touchstone or discriminant even for reductions involving other kind of
theories.

e The relationship between theory reduction and ontological
reduction. This issue is closely related to the previous one: it seems
that for Hofweber a theory reduction is philosophical relevant as far as
it entails an ontological reduction. Proposal: in the field of theories
of truth we find proposals about reduction that might be interesting
for other fields as well. In particular we mention the Halbach’s one of
considering ontological commitments as concerning ‘assumptions about
objects’ more than ‘objects per se’.

25See their contributions in Erkenntnis 53 (2000).
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Since we are dealing with a particular set of theories, namely axiomatic
theories of truth, caution is required: one has to take into account within
the discussion the peculiarities of the domain of interest. Some working
hypothesis might turn out to be appropriate for a specific field, but there
is no guarantee they can be ‘exported’ as they are to other fields. I do not
argue that this can be done in practice, indeed the viability of this kind of
extension should be examined case by case. However, in any case, those
hypothesis can constitute a starting point for further considerations.

To sum up, I maintain that reductions can be successfully used in the
field of axiomatic theories of truth in order to tackle logical-philosophical
issues concerning truth and, moreover, a purely philosophical reflection on
reduction and truth may contribute to the debate about reduction tout court.

Future development lines may result from two fronts: a logical research
and a purely philosophical one. As far as the merely technical part of the
work, there are some problems that still remain open. Further investigations
might clarify whether those claims are provable or might establish that they
cannot be proved — and this would be a result as well. On the philosophical
side, I believe a deeper analysis of the philosophical value of this kind of re-
searches is required in order to clarify to what extent a logical research in the
field of axiomatic theories of truth make its contribution to the fascinating
philosophical issues concerning truth.
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