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Sommario in italiano

L’argomento di questa tesi si colloca alla confluenza di due percorsi diversi della
logica matematica. Da un lato, vi sono l’aritmetica e l’analisi nonstandard: un pro-
dotto della teoria classica dei modelli, rimasto per lo più confinato in ambito classico,
anche nel momento in cui, in seguito alla teoria interna degli insiemi di Nelson, si
è riconosciuta la possibilità di un approccio sintattico. Dall’altro lato, vi è la teoria
delle interpretazioni funzionali, una branca della teoria delle dimostrazioni, origina-
ta dall’interpretazione Dialectica di Gödel; in particolare, la sua recente riscoperta
da parte del programma proof mining - l’estrazione di contenuto computazionale da
dimostrazioni formali.

Dove questi si incontrano, è in una generale propensione nei confronti della
costruttivizzazione della matematica. I primi modelli di aritmetica nonstandard uti-
lizzavano, in modo essenziale, risultati non costruttivi, come l’esistenza di ultrafiltri
non principali di insiemi; e anche nell’approccio sintattico, si è realizzato in breve
che diversi utili principi nonstandard conducessero a istanze della legge del terzo
escluso. È sembrato, per diversi anni, che l’analisi nonstandard fosse priva di alcun
interesse per gli analisti costruttivi.

Ma non tutti si sono dati per vinti. Dopo un successo parziale di Palmgren, nel
1995, Moerdijk ha descritto il primo modello costruttivo dell’aritmetica nonstandard
con un principio di transfer completo: un topos di fasci su una categoria di filtri
e germi di funzioni “continue”. Più di recente, nel 2012, van den Berg, Briseid
e Safarik hanno definito un’interpretazione funzionale, Dialectica nonstandard, in
grado di eliminare istanze di principi nonstandard da dimostrazioni dell’aritmetica
intuizionistica in tutti i tipi finiti; dimostrando sintatticamente, nel contempo, la
conservatività di tali principi rispetto al sistema di base.

I principi caratteristici dell’interpretazione Dialectica nonstandard hanno una
peculiarità: sono herbrandizzati. In breve, laddove le tradizionali interpretazioni
funzionali avrebbero prodotto un singolo realizzatore di un quantificatore esisten-
ziale, questi principi producono una sequenza finita di realizzatori potenziali, fra i
quali almeno uno è un realizzatore effettivo. Questa proprietà, che ricorda le disgiun-
zioni alla Herbrand nella logica classica, rovina il significato computazionale della di-
sgiunzione intuizionistica, ma sembra inevitabile nell’interpretazione dell’aritmetica
nonstandard.

Il Capitolo 1 della tesi è dedicato alla disamina di alcuni principi e regole del-
l’aritmetica nonstandard, con particolare riferimento alla loro accettabilità da un
punto di vista costruttivo. Inizialmente, definiamo il sistema dell’aritmetica di Hey-
ting in tutti i tipi finiti, e lo estendiamo con un predicato stσ(x), “x è standard”,
per ogni tipo σ.

In seguito, discutiamo i fondamentali principi di overspill e underspill, e intro-
duciamo una loro generalizzazione ai tipi finiti: overspill e underspill per sequenze.
Di questi nuovi principi, mappiamo le relazioni con altri principi noti dell’analisi
nonstandard, o rifiutati dall’analisi costruttiva alla Bishop. Passiamo poi in rasse-
gna i principi e le regole di transfer, per dedicarci infine ai cosiddetti principi di
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saturazione, e ad alcuni principi (non classici) di uniformità.
Nel Capitolo 2, dopo una breve introduzione alle interpretazioni funzionali Dia-

lectica e Diller-Nahm, apriamo una parentesi su un’idea ricorrente nella teoria delle
dimostrazioni, risalente, in prima istanza, a un articolo di Lifschitz del 1985: ave-
re due specie di quantificatori, una dotata di significato computazionale, e l’altra
priva. Lifschitz propose l’introduzione di un predicato K(x), “x è calcolabile”, per
determinare la distinzione, con caratteristiche analoghe al nostro st(x).

Seguendo questa idea, presentiamo un’estensione di Diller-Nahm con due tipi di
quantificatori, che chiamiamo Diller-Nahm uniforme; ne dimostriamo la validità, ne
diamo una caratterizzazione, e stabiliamo alcune prima proprietà. Il sistema carat-
teristico di Diller-Nahm uniforme sembra adeguato all’aritmetica proposta da Lif-
schitz; è, nel contempo, una versione “de-herbrandizzata” del sistema caratteristico
di Dialectica nonstandard. A quest’ultima è dedicata la parte finale del capitolo.

Nel Capitolo 3, dopo una breve introduzione alla logica categoriale, descriviamo
la costruzione che porta al topos di Moerdijk, N , e introduciamo una sua variante,
che chiamiamo U . Dimostriamo poi che, date alcune ragionevoli assunzioni riguardo
alla metateoria, la logica del primo ordine in U , rispettivamente in N , riflette fedel-
mente il sistema caratteristico di Diller-Nahm uniforme, rispettivamente di Dialec-
tica nonstandard. La caratterizzazione del rapporto fra U and N fornisce, dunque,
un corrispettivo categoriale della herbrandizzazione.

Infine, passiamo in rassegna una classe completamente diversa di topoi elementa-
ri, non di Grothendieck, che sono stati presi in considerazione come modelli di inter-
pretazioni funzionali, incluse Diller-Nahm e Dialectica nonstandard; la cui relazione
con i topoi U e N ancora non è chiara.

Le conclusioni sono dedicate ai risultati concettuali che riteniamo più rilevanti,
e alle domande che lasciamo aperte.
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Introduction

This thesis is an account of the research I have done during one semester that I spent
in Utrecht, as an exchange student, under the supervision of Benno van den Berg. Its
focus stands at a confluence of two quite different paths in mathematical logic.

On one end, there is nonstandard arithmetic, and analysis: a subject that has been
an upshot of classical model theory, and even after it was recognised that it was amenable
to a syntactic treatment, as in Nelson’s internal set theory, it mostly remained within the
boundaries of classical set theory. On the other end, there is the markedly proof-theoretic
topic of functional interpretations, stemming from Gödel’s Dialectica interpretation; and,
in particular, its recent revival through the programme of proof mining - the extraction
of computational content from formalised proofs.

Where these ends meet, is in a general inclination towards the constructivisation
of mathematics. The original models of nonstandard arithmetic were built from non-
constructive objects, such as nonprincipal ultrafilters of sets, and even in the syntactic
approach, it was soon realised that many useful principles led to instances of the ex-
cluded middle - the nemesis of intuitionistic mathematics. But did nonstandard analysis
really have nothing to offer to constructive analysts?

Not everyone was convinced, including, notably, Per Martin-Löf, who pushed the
question in the early 1990s: first, Erik Palmgren succeeded in building a model with
a restricted, yet useful transfer principle; then, in 1995, Ieke Moerdijk described the
first constructive model of nonstandard arithmetic with a full transfer principle - a
topos of sheaves over a category of filters. Later, by working in this topos, Palmgren
provided simplified, nonstandard proofs of several theorems of constructive analysis, and
so demonstrated the usefulness of this model.

But if nonstandard proofs do provide some constructive information, we might as
well try to extract it in an automated fashion. In 2012, van den Berg, Briseid and
Safarik succeeded in defining a functional interpretation, nonstandard Dialectica, which
could eliminate nonstandard principles from proofs of intuitionistic arithmetic in all finite
types, enriched with a predicate stσ(x), “x is standard”, for all types σ; also yielding a
proof of conservativity of these principles over the base system.

Now, some of these were known to hold in Moerdijk’s topos - including a form
of Nelson’s idealisation axiom, an underspill principle, and the undecidability of the
standardness predicate. When I arrived in Utrecht, I was given the task of investigating
how deep this connection would go.

And a deep connection it is: with the exception of one principle, which requires an
assumption about the metatheory - in my opinion, not an unreasonable one -, all the
characteristic principles of nonstandard Dialectica are true in the topos model, for free.
Chapter 3 is devoted to showing this.
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During this investigation, I also chanced upon two new principles, sequence overspill
and sequence underspill. These appear to be more natural equivalents of principles that
have been taken into consideration, earlier, in the context of proof-theoretic nonstandard
arithmetic. In Chapter 1, I mapped their relation to other familiar principles from
nonstandard and constructive analysis.

That is not all. Several characteristic principles of nonstandard Dialectica have a
peculiarity: they are herbrandised. This is explained in more detail in Chapter 1; in
short, where “traditional” functional interpretations would produce a single witness of
an existential statement, these principles produce a finite sequence of potential witnesses,
of which at least one is an actual witness. This property destroys the computational
meaning of intuitionistic disjunction, yet seems unavoidable in the interpretation of
nonstandard arithmetic.

The categorical analysis of nonstandard Dialectica supplied a very convenient way of
“de-herbrandising”, through a simple change in the Grothendieck topology, down from
finite covers to singleton covers. Full transfer is lost - in the new topos, disjunction is
stronger than in the metatheory - as well as the link to nonstandard arithmetic; but the
de-herbrandised principles induce a new functional interpretation, which we call uniform
Diller-Nahm, and is the main focus of Chapter 2.

Uniform Diller-Nahm has some striking similarities to light Dialectica, a variant of
Dialectica with two different kinds of quantifiers - computational, and non computational
- introduced in 2005 by Mircea-Dan Hernest, for the purpose of more efficient program
extraction. Yet, irrespective of its technical value, the characteristic proof system of
uniform Diller-Nahm might have a dignity of its own.

In 1985, Vladimir Lifschitz proposed a simple extension of Heyting arithmetic, where
a distinction could be made between calculable, and non calculable natural numbers;
a synthesis of classical and intuitionistic arithmetic. Under the interpretation of the
predicate st(x) as “x is calculable”, the proof system of uniform Diller-Nahm seems to
be well-suited for Lifschitz’s intended calculus. How useful that could turn out to be, I
do not know; yet there is something intriguing about the “standardness” of nonstandard
arithmetic being, conceivably, “herbrandised calculability”.

As you may have noticed, in no way does the order in which these topics are presented
in the thesis reflect the actual order in which I got to them; I had to opt for a reasonable
progression of arguments, and the result is, inevitably, a fabrication of history. This
introduction is a way of restoring some historical truth. It is also the only place where I
refer to myself, before disappearing behind an impersonal “we”; it is hard to establish,
for most statements and results, how much authorship one can personally claim, so this
seemed a necessity to me.

So Chapter 1 and Chapter 2 are all about proof theory: the first is a discussion of
principles of nonstandard arithmetic, and the second is about functional interpretations.
All the category theory is stored in Chapter 3. There is a short summary of the contents
of each section, at the beginning of each chapter; no need to be too detailed here.

Perhaps my main stylistic choice is that I introduce new notions, or technical results,
only as soon as they are actually used: hence, no introductory sections, where all the
lemmata and definitions are introduced, long before they are actually employed. This is
particularly evident in Chapter 3, where this decision was also made in compliance with
a pluralist view of metamathematics; so, for instance, no extra structure is imposed on
the category of sets and functions, until it is really needed.
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I tried to be formal enough in proofs, and informal in their discussion, and I did not
shy away from analogy. Overall, I hope that I avoided, at least, an excess of unpleasant-
ness in style.

Original contributions of this thesis

To the best of my knowledge, the following parts of this thesis are my original contribu-
tions.

Chapter 1. Sections 1.3, 1.4: the definition of the sequence overspill and sequence
underspill principles, and the equivalences OS∗ ↔ I and US∗ ↔ HGMPst + R;
direct proofs of all their consequences, including EUS and EOS (but I → LLPOst

was already known). Section 1.6: the definition of the nonstandard uniformity
principle, and the discussion of its consequences.

Chapter 2. Sections 2.2, 2.3 - all of them: the definition of the uniform Diller-
Nahm interpretation; the soundness, characterisation and program extraction the-
orems; the discussion of their consequences, and the connection to Lifschitz’s cal-
culability.

Chapter 3. Section 3.2: the definition of the topos U , and the characterisation of
the inclusion N � U . Sections 3.3, 3.4: the adaptation of theorems about N to U ;
the connection of N and U with nonstandard Dialectica, and uniform Diller-Nahm,
respectively; the discussion of the validity of FANst in N . Section 3.5: the proof
that Dst, DNm, Her, and Mod form a pullback square of geometric morphisms
of triposes.

Regarding Section 3.4, I discovered only at a late stage that a characterisation of first
order logic in N had already been given by Butz; nevertheless, the proofs that US∗,
NCR, and HACst hold in N , which only utilise sheaf semantics, are original.
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Chapter 1

Nonstandard principles of
arithmetic

In this chapter:

. We describe the proof system of Heyting arithmetic in all finite types, and a def-
initional extension with types for finite sequences, with new forms of application
and λ-abstraction. - Section 1.1

. We define an extension of Heyting arithmetic with a standardness predicate, in-
spired by Nelson’s idea of creating a nonstandard universe through syntax. - Section
1.2

. Overspill and underspill are well-known nonstandard techniques. We introduce the
new principles of sequence overspill and underspill, a useful generalisation to all
finite types, and map their relations to familiar principles from nonstandard and
constructive analysis alike. - Sections 1.3, 1.4

. We give an overview of transfer principles and rules, with their different degrees
of acceptability for constructive mathematics. - Section 1.5

. After a brief comment on saturation principles, we explain the idea of herbran-
disation, and provide an original analysis of the so-called nonclassical realisation
principle as a herbrandised uniformity principle. - Section 1.6

1.1 Intuitionistic arithmetic

We want to build a framework in which to study the proof theory of (more or less)
constructive, first order nonstandard arithmetic. Unless we wanted to get really quirky,
this should be an enrichment of traditional proof systems of arithmetic; these have been
the subject of excellent, and extremely detailed textbook presentations. In particular,
[59] is the standard reference here; and [26] is also a very good source. The following is
that mandatory section where we give a brief, poorer introduction in order to try and
make this thesis self-contained.

Notation. In typed systems, we use σ, τ, ρ as symbols for arbitrary types. We
write a : σ to indicate that a term a is of type σ. For each type σ, we assume
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2 Chapter 1 Nonstandard principles of arithmetic

that we have a denumerable stock of variables, x, y, z, . . . : σ. We use the primitive
logical symbols ⊥, ∧, ∨, →, ∀x : σ, ∃x : σ. We define ¬A := A → ⊥, A ↔ B :=
(A→ B) ∧ (B → A).

When introducing a proof system, there is usually a choice between a “Hilbert-
style” presentation (many axioms, few rules) and a “natural deduction” one (basically,
everything is a rule). In most cases, there is a way to switch from one to the other
system, preserving provability. The rule of thumb, here, is that it is easier to prove
things about Hilbert-style systems, and that it is easier to do formal proofs in natural
deduction.

We are not going to do fully formal proofs. We will use informal intuitionistic reason-
ing, of the kind suggested by the Brouwer-Heyting-Kolmogorov (BHK) interpretation:

⊥ has no proof;

a proof of A ∧B is a pair 〈a, b〉 such that a proves A and b proves B;

a proof of A ∨ B is a pair 〈z, p〉 such that either z = 0 and p is a proof of A, or
z = 1 and p is a proof of B;

a proof of A→ B is a construction that transforms any proof of A into a proof of
B;

a proof of ∀x : σ A is a construction producing, for every a of type σ, a proof of
A[a/x];

a proof of ∃x : σ A is a pair 〈a, p〉 such that a : σ and p is a proof of A[a/x].

Here, A[a/x] denotes the formula where occurrences of x in A have been replaced by a.
Of course, this does not actually define anything rigorous; and formalisations of the

notion of proof here, such as Kleene’s recursive realisability (reviewed in [60]), can lead
to incompatibility with classical mathematics, which is not what we are looking for.
Nevertheless, resorting to BHK gives an intuition of what is valid intuitionistically, and
what is not.

The most important principle that fails intuitionistically, and is in fact characteristic
of classicality, is the law of the excluded middle:

LEM : A ∨ ¬A

Under BHK, this amounts to knowing for every proposition A whether it is A, or ¬A,
that holds.

Anyway - since we are going to reason informally, but Chapter 2 will be all about
soundness proofs, Hilbert-style is the natural choice.

Definition 1.1. The language of Heyting arithmetic , L(HA) is an untyped language
including a constant 0, a unary function symbol S, and function symbols for all primitive
recursive functions (see [54] for a primer of recursion theory).

The logical axioms and rules of HA are

1. the structural axioms of intuitionistic logic:

contraction : A ∨A→ A, A→ A ∧A;

weakening : A→ A ∨B, A ∧B → A;

exchange : A ∨B → B ∨A, A ∧B → B ∧A;



Intuitionistic arithmetic 3

2. the logical axioms of intuitionistic first order predicate logic:

ex falso quodlibet : ⊥ → A;

∀xA→ A[a/x], A[a/x]→ ∃xA,

with the usual side conditions on free variables;

3. the logical rules of intuitionistic first order predicate logic:

modus ponens :
A A→ B

B
; syllogism :

A→ B B → C

A→ C
;

exportation :
A ∧B → C

A→ (B → C)
; importation :

A→ (B → C)

A ∧B → C
;

expansion :
A→ B

C ∨A→ C ∨B
;

B → A

B → ∀xA
,

A→ B

∃xA→ B
, x not free in B;

4. the equality axioms:

x = x, x = y → y = x, x = y ∧ y = z → x = z,

x = y → fx = fy

for all function symbols f of L(HA).

The nonlogical axioms of HA are

1. the successor axioms:
¬Sx = 0,

Sx = Sy → x = y;

2. defining equations for the primitive recursive functions;

3. the induction schema:

IA :
(
ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(Sx))

)
→ ∀xϕ(x) .

We will often write x+ 1 instead of Sx.

One then obtains Peano arithmetic as the “classicalisation” of HA - the system
HA + LEM.

1.1.1 Arithmetic in all finite types

The interpretations we are going to consider in Chapter 2 actually apply to stronger
systems of many-sorted arithmetic in all finite types.

Definition 1.2. The type structure T of finite types is generated by the inductive
clauses
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. 0 is in T;

. if σ, τ are in T, then σ → τ is in T.

When unbracketed, it is assumed that the type-forming operation is right-associative,
e.g. ρ→ σ → τ ≡ ρ→ (σ → τ).

The idea, here, is that 0 should be the type of natural numbers; σ → τ should be a
class of mappings from elements of type σ to elements of type τ . One speaks of a type
degree, defined as

deg(0) := 0 ,

deg(σ → τ) := max(deg(σ) + 1,deg(τ)) .

All the finite types have a finite degree - that is why they are called so. Elements of
degree higher than 1 are usually called functionals.

One immediate advantage of introducing types of higher degree is that one can
formalise analysis, to some extent: once a coding of the rationals onto the natural
numbers has been chosen, Cauchy sequences of rationals - hence, real numbers - can be
represented by elements of type 0→ 0.

Definition 1.3. The language of N-HAω is many-sorted with T as its collection of types,
and includes constants 0 : 0 (zero), S : 0→ 0 (successor), and, for all types ρ, σ, τ ,

Πσ,τ : σ → τ → σ (projector),

Σρ,σ,τ : (ρ→ τ → σ)→ ((ρ→ τ)→ (ρ→ σ)) (combinator),

Rσ : σ → (σ → 0→ σ)→ (0→ σ) (recursor).

The class of terms of N-HAω is defined inductively as follows:

. a constant c : σ or a variable x : σ is a term of type σ;

. if a : σ, b : σ → τ , then ba : τ .

For all types σ, we have an equality symbol =σ. The formulae of N-HAω are generated
by the inductive clauses

. for all types σ and terms s, t : σ, s =σ t is a formula;

. if ϕ,ψ are formulae, ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ, ∀x : σ ϕ, and ∃x : σ ϕ are formulae.

Notice that in arithmetic, we can define ⊥ := 0 =0 S0.
The logical axioms and rules of N-HAω are those of many-sorted intuitionistic first or-

der predicate logic, as in the description of HA, with the appropriately typed quantifiers.
The nonlogical axioms are

1. the successor axioms and the induction schema, restricted to type 0;

2. the defining axioms of Πσ,τ , Σρ,σ,τ , and Rσ:

Πσ,τxy =σ x , x : σ, y : τ ;

Σρ,σ,τxyz =σ xz(yz) , x : ρ→ σ → τ, y : ρ→ σ, z : ρ;{
Rσxy0 =σ x ,

Rσxy(Sz) =σ y(Rσxyz)z ,
x : σ, y : σ → 0→ σ, z : 0 .
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From the projector and combinator, one can define the λ-abstraction operator, such that

N-HAω ` (λx.b)a =τ b[a/x] , x, a : σ, b : τ .

Again, details can be found in [59].

The letter N in N-HAω stands for neutral, with respect to the treatment of equality
in higher types. Depending on one’s necessities, the system can be upgraded to one of
the following.

• The system I-HAω with intensional equality. This is arguably the choice that is
more in the constructive spirit, since it makes equality decidable for all types. It
amounts to adding constants Eσ : σ → σ → 0 for all types σ, such that

Eσxy = 0↔ x =σ y ,

Eσxy = 0 ∨ Eσxy = 1 .

• The system E-HAω
0 , where equality for types of higher degree is extensional, i.e.

the axiom
∀f, g : σ → τ (f =σ→τ g ↔ ∀x : σ fx =τ gx)

holds for all σ, τ . This is the system that is more convenient for use with the
functional interpretations of Chapter 2.

A variant of E-HAω
0 , called just E-HAω, has higher-type equality as a defined notion:

=0 is the only equality symbol that is added to the language, and f =σ→τ g is read as
an abbreviation of ∀x : σ fx =τ gx. The functionals are forced to behave extensionally
by the axiom

EXT : x =σ y → fx =τ fy , x, y : σ , f : σ → τ.

Another variant we will use is WE-HAω, where the extensionality axiom is replaced
with the strictly weaker extensionality rule

EXT-R :
fx1 . . . xn =0 gx1 . . . xn ϕqf(f)

ϕqf(g)
,

where ϕqf is a quantifier-free formula, and the variables are of appropriate types.

1.1.2 Finite sequences

By the combinatory completeness of the pair (Πσ,σ,Σσ,σ,σ) for all types σ, it is possible
to introduce in N-HAω a coding of finite sequences of elements of any type. As we will
see, finite sequences (as first order stand-ins for sets) are quite ubiquitous in arguments
of nonstandard arithmetic. Thus, in order to lighten the syntax, it seems preferable to
introduce an extension of this system, with primitive types for finite sequences (hence,
also variables running over finite sequences). This is a definitional extension, therefore
conservative over the base system.

Following [64], we choose E-HAω
0 as our base.

Definition 1.4. The type structure T∗ is the closure of T under the additional clause
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. if σ is in T∗, then σ∗ is in T∗.

Notation. We use s, t, u, v (and s′, t′, . . .) as variables of sequence type.

Definition 1.5. The system E-HAω∗ is the extension of E-HAω
0 with types for finite

sequences, whose language includes, for all types σ, τ , additional constants 〈〉σ : σ (empty
sequence), C : σ → σ∗ → σ∗ (prepending operator), and Lσ,τ : σ → (σ → τ → σ) →
(τ∗ → σ) (list recursor), with defining axioms

SA : ∀s : σ∗ (s = 〈〉σ ∨ ∃x : σ ∃s′ : σ∗ (s = Cxs′)) ,{
Lσ,τxy〈〉τ =σ x ,

Lσ,τxy(Czs) =σ y(Lσ,τxys)〈z〉 ,
x : σ, y : σ → τ → σ, z : τ, s : τ∗ ,

where 〈z〉 is the “singleton” Cz〈〉τ . All the axioms and rules of E-HAω
0 , extended to the

types in T∗, are carried over to E-HAω∗.

Let us add to the language, for every type σ, a constant ∅σ. Using the list recursor,
one can define all the basic operations on finite sequences one needs in practice.

(i) A length function | · | : σ∗ → 0, satisfying

|〈〉σ| = 0 , |Cas| = S|s| ,

for s : σ∗, a : σ.

(ii) A projection function (s, i) 7→ si of type σ∗ → 0→ σ, satisfying

(〈〉σ)i = ∅σ for all i,

(Cas)0 = a ,

(Cas)Si = si .

(iii) A concatenation operation · : σ∗ → σ∗ → σ∗, such that

〈〉σ · t = t , Cas · t = Ca(s · t) .

As expected, concatenation is provably associative, so we will iterate it without
bothering with brackets.

As we mentioned, finite sequences are our replacement for sets.

Definition 1.6. Let a : σ, s, s′ : σ∗. We define the abbreviations

(i) a ∈σ s := ∃i < |s| (a =σ si) (a is an element of s);

(ii) s′ ⊆σ s := ∀x : σ (x ∈σ s′ → x ∈σ s) (s′ is contained in s).

We will drop subscripts in most occasions. We also extend the relation ⊆σ to sequence-
valued functionals, pointwise: for s′, s : τ → σ∗,

(iii) s′ ⊆ s := ∀x : τ (s′x ⊆σ sx) .

The relation ⊆ determines a preorder, provably in E-HAω∗.



Intuitionistic arithmetic 7

Definition 1.7. A formula Φ(s) is upwards closed in s : σ∗ if

Φ(s′) ∧ s′ ⊆ s→ Φ(s) .

The following, easy properties are all established in [64].

Lemma 1.8. (a) E-HAω∗ ` ∀s : σ∗ (|s| = 0↔ s = 〈〉σ) ,

(b) E-HAω∗ ` ∀n : 0∀s : σ∗ (|s| = Sn↔ ∃x : σ ∃t : σ∗ (s = Cxt ∧ |t| = n)) .

Proof. Let s : σ∗. By the sequence axiom SA, either s = 〈〉σ or s = Cxt for some x : σ,
t : σ∗. If |s| = 0, the latter case leads to a contradiction, for |s| = S|t| > 0.

If |s| = Sn, then the former case leads to a contradiction, and we have proven the
directions left to right. The converses are immediate.

Proposition 1.9. E-HAω∗ proves the induction schema for sequences

IA∗ :
(
ϕ(〈〉σ) ∧ ∀x : σ ∀s : σ∗ (ϕ(s)→ ϕ(Cxs))

)
→ ∀s : σ∗ ϕ(s) .

Proof. Suppose ϕ(〈〉σ) and ∀x : σ ∀s : σ∗ (ϕ(s)→ ϕ(Cxs)). By the previous lemma,

∀s : σ∗ (|s| = 0→ ϕ(s)) .

Fix n : 0, and assume ∀s : σ∗ (|s| = n → ϕ(s)). Let s be of length Sn. Again by the
previous lemma, s = Cxt for some x : σ, and t : σ∗ of length n, and ϕ(t) holds by
hypothesis. Therefore, ϕ(Cxt) ≡ ϕ(s) holds as well; and we have proved

∀s : σ∗ (|s| = n→ ϕ(s))→ ∀s : σ∗ (|s| = Sn→ ϕ(s)) .

By ordinary induction, it follows that ∀n : 0, s : σ∗ (|s| = n→ ϕ(s)).

Corollary 1.10. E-HAω∗ proves that

∀s, t : σ∗ |s · t| = |s|+ |t| ,

and that {
(s · t)i = si , i < |s| ,
(s · t)i = ti−|s| otherwise .

Proof. Follows from the recursive definition of length and concatenation, and the induc-
tion schema for sequences.

An easy consequence is that, for all s, t : σ∗, E-HAω∗ proves that s, t ⊆ s · t.

Definition 1.11. Let s, t : σ∗. We say that s and t are extensionally equal, and write
s =e t, if

|s| = |t| ∧ ∀i < |s| (si = ti) .

Corollary 1.12. E-HAω∗ ` ∀s, t : σ∗ (s =e t→ s = t) .

Proof. By induction for sequences. Suppose s =e t. If s = 〈〉σ, then |s| = |t| = 0, so, by
Lemma 1.8, t = 〈〉σ.

Otherwise, s = Cxs′ for some x, s′. Then |s| = |t| = Sn for n = |s′|; again, by
Lemma 1.8, t = Cyt′ for some y, t′. But x = s0 = t0 = y, and s′ =e t

′; by the inductive
hypothesis, s′ = t′. Therefore, s = Cxs′ = Cyt′ = t.
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It is possible to define a form of application and of λ-abstraction for sequences.

Definition 1.13. Let s : (σ → τ∗)∗, a : σ, t : σ → τ∗. Then

s[a] := (s0a) · . . . · (s|s|−1a) : τ∗ ,

Λx.t := C(λx.t)〈〉 : (σ → τ∗)∗ .

The following proposition justifies the definition we just gave.

Proposition 1.14. E-HAω∗ proves that for all s : σ → τ∗, a : σ,

(Λx.s)[a] = (λx.s)a = sa .

An important feature of the sequence application is that it is provably monotone in
the first component.

Lemma 1.15. E-HAω∗ proves that for all s, s′ : (σ → τ∗)∗, a : σ,

s ⊆ s′ → s[a] ⊆ s′[a] .

Proof. Let i < |s[a]|. By definition of sequence application, there exist a j < |s| and a
k < |sja| such that

s[a]i = (sja)k .

Since s ⊆ s′, there is a ` < |s′| such that sj = s′`, hence s[a]i = (s′`a)k by extensionality.
But s′`a ⊆ s′[a], so there exists some m < |s′[a]| such that

s[a]i = (sja)k = s′[a]m .

Therefore, s[a] ⊆ s′[a].

1.2 The syntactic approach to the nonstandard

It has been known at least since 1934, Skolem’s [57], that the Peano axioms of arithmetic
(a fortiori, the Heyting axioms as well) admit models ∗N containing infinite natural
numbers; that is, numbers that are larger than those obtained by a finite iteration of
the successor. These models all contain an initial segment isomorphic to the standard
model, the good old N.

It took, however, a little longer to figure out that these were good for something.
Once we do arithmetic inside a nonstandard model, we would like to derive properties
that are also true of the standard model; in other words, a “link” is needed between truth
in the nonstandard model and truth in the standard model. This link is commonly called
a transfer theorem.

From a nonstandard model of the natural numbers, one can build nonstandard models
of the rationals and of the reals, including infinitesimal as well as infinite numbers; and,
again, one would want to obtain a nice transfer theorem.

In 1958, Schmieden and Laugwitz [56] proposed the first explicit model of nonstan-
dard analysis. It had the advantage of being fully constructive, but a quite weak transfer
property.

The breakthrough and limited popularisation of nonstandard arithmetic and analysis
came in the ’60s, the first edition of Robinson’s Non-standard analysis [53] describing



The syntactic approach to the nonstandard 9

a nonstandard model of the natural numbers that is an elementary extension of the
standard model; that is, an extension preserving truth of first order statements.

Moreover, Robinson’s models allowed for a formal “calculus of infinitesimals”, that
was reminiscent of early, Euler-style analysis; leading to proofs of known theorems that
were arguably shorter and leaner - and even to some new results, e.g. [5]. In subsequent
years, nonstandard analysis won some illustrious supporters - notably, Gödel [16, pp.
311-312]:

“There are good reasons to believe that nonstandard analysis, in some version or
other, will be the analysis of the future.”

Nevertheless, there were many issues, besides habit, which contributed to the new meth-
ods never gaining mainstream adoption.

(i) The construction of the models relied on results, such as the compactness theorem,
or the existence of nonprincipal ultrafilters of subsets, which make an essential use
of the axiom of choice.

It is a well-known result, due to Diaconescu [11], that the full set-theoretic axiom
of choice implies LEM, that is classicality. This led to full rejection from the
constructivist community, championed by Bishop [7]; but a certain suspiciousness
was more widespread, towards these objects that “exist, but have been seen by
nobody”.

(ii) More generally, the proliferation of non-equivalent models, which, however, sup-
ported similar modes of reasoning, led to a feeling of disconnectedness of the new
methods from the usual set-theoretic foundations.

Already in the ending of [53], Robinson suggested that one could view nonstandard
analysis as introducing “new deductive procedures rather than new mathematical enti-
ties”, i.e. proof-theoretically rather than model-theoretically. This route was followed
as early as in 1969 by Kreisel [29]; and, perhaps most notably, led to the development
of Nelson’s internal set theory [38] in 1977.

Definition 1.16. The theory IST (internal set theory) is an extension of ZFC (Zermelo-
Fraenkel set theory with the axiom of choice - for which see any textbook on set theory,
e.g. [22]) including

• a unary predicate st(x) (x is standard), and associated quantifiers

∀stx . . . := ∀x (st(x)→ . . .) ,

∃stx . . . := ∃x (st(x) ∧ . . .) ;

• the three axiom schemata

idealisation : ∀st finz ∃x ∀y ∈ z ϕ(x, y)↔ ∃x ∀sty ϕ(x, y) ,

standardisation : ∀stx ∃sty ∀stz (z ∈ y ↔ z ∈ x ∧ Φ(z)) ,

transfer : ∀stt1, . . . , tn (∀stxϕ(x)→ ∀xϕ(x)) ,

where ϕ ranges over internal formulae, i.e. formulae not containing the standard-
ness predicate; and Φ ranges over all formulae.
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The names of the axiom schemata also form the acronym IST, which is quite convenient.

We will later meet these principles in some form, and examine their connection to
other nonstandard principles; yet this is no place for a thorough exploration of IST, to
which [52] is a very readable introduction, for those interested. What matters, for now,
is that IST supports most of the usual forms of nonstandard reasoning; that it does so
in a way that feels somewhat like ordinary mathematics (apart from some annoyances
with set formation) - as if the standard elements were “already there”, but could not be
accessed without the standardness predicate; and that it is a conservative extension of
ZFC.

Nelson provided two proofs of the latter fact: a model-theoretic one, in his original
article; and a proof-theoretic one [40], in the guise of a reduction algorithm, translating
nonstandard into standard proofs. This “interpretation” of IST into ZFC was the cue
for the authors of [64] to look into functional interpretations of nonstandard arithmetic.

As we are interested in constructive nonstandard arithmetic, it is noteworthy that
standardisation is, in some way, both less acceptable and less relevant than the other
two axiom schemata of IST. It is the origin, in IST, of the so-called standard part map
defined on limited real numbers, which is pinpointed in [68] as the source of most non-
constructiveness in nonstandard proofs. However, in [39], Nelson developed a large chunk
of nonstandard probability theory using idealisation and transfer, and dispensing with full
standardisation, which therefore seems to be less essential.

Of course, ZFC is the epitome of a tremendously strong system, and its underlying
logic is classical. Something more manageable, and constructive, such as E-HAω∗, seems
a better starting point, if one is interested in computational content hidden within
nonstandard proofs.

Definition 1.17. The system E-HAω∗
st is an extension of E-HAω∗, whose language in-

cludes a (unary) predicate stσ(x), x : σ, for all types σ of T∗; and the external quantifiers
∀stx : σ, ∃stx : σ.

Notation. Following Nelson, so-called internal formulae - those in the language
of E-HAω∗ - are always denoted with small Greek letters, and generic, external
formulae with capital Greek letters.

The following axioms are added to those of E-HAω∗:

1. the defining axioms of the external quantifiers:

∀stx : σΦ(x)↔ ∀x : σ (stσ(x)→ Φ(x)) ,

∃stx : σΦ(x)↔ ∃x : σ (stσ(x) ∧ Φ(x)) ;

2. axioms for the standardness predicate:

stσ(x) ∧ x =σ y → stσ(y) ,

stσ(a) for all closed a : σ ,

stσ→τ (f) ∧ stσ(x)→ stτ (fx) ;

3. the external induction schema:

IAst :
(
Φ(0) ∧ ∀stx : 0 (Φ(x)→ Φ(Sx))

)
→ ∀stx : 0 Φ(x) .
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The “internal” induction schema IA is assumed to hold for internal formulae only.
Finally, we define disjunction differently than in the base system:

Φ ∨Ψ := ∃stz : 0 (z = 0→ Φ ∧ ¬ z = 0→ Ψ) .

The basic linguistic blocks are in place, but there is nothing inherently nonstandard
about the system we have so far defined. In fact, one could interpret stσ(x) as x =σ x,
and all the new axioms would be provable in E-HAω∗. This simple fact also implicates
that E-HAω∗

st is a conservative extension of E-HAω∗.
However, there are some simple facts, of the kind we would expect from a “standard-

ness property”, that can already be proved.

Proposition 1.18. For every formula Φ(x), E-HAω∗
st proves

Φ(x) ∧ x = y → Φ(y) .

Proof. Easy induction on the logical structure of Φ, utilising the fact that the standard-
ness predicate is extensional.

Proposition 1.19. E-HAω∗
st ` ∀n,m : 0 (st0(n) ∧m ≤ n→ st0(m)) .

Proof. Apply external induction to the formula Φ(n) := ∀m : 0 (m ≤ n→ st0(m)) .

Definition 1.20. Let s : σ∗. We say that s is (properly) finite if |s| is standard. We
say that s is hyperfinite if |s| is not standard.

We show that basically anything one can get from standard sequences is standard.

Lemma 1.21. (a) E-HAω∗
st ` ∀s : σ∗ (st(s)→ st(|s|)) ,

(b) E-HAω∗
st ` ∀s : σ∗ (st(s)→ ∀i < |s| st(si)) ,

(c) E-HAω∗
st ` ∀s : σ∗ ∀x : σ (st(s) ∧ x ∈σ s→ st(x)) ,

(d) E-HAω∗
st ` ∀s, t : σ∗ (st(s) ∧ st(t)→ st(s · t)) ,

(e) E-HAω∗
st ` ∀f : 0→ σ∗ ∀n : 0

(
st(f) ∧ st(n)→ st(f0 · . . . · fn)

)
.

Proof. Everything follows from the standardness axioms, coupled with the fact that the
list recursor is standard.

A simple consequence of the lemma is that the operations of sequence application
and abstraction, as defined in the previous section, preserve standardness.

Corollary 1.22. (a) E-HAω∗
st ` ∀s : (σ → τ∗)∗ ∀x : σ

(
st(s) ∧ st(x)→ st(s[x])

)
,

(b) E-HAω∗
st ` ∀s : σ → τ∗ (st(s)→ st(Λx.s)) .

Finally, we prove that finite sequences of standard elements are standard; the con-
verse is already a consequence of Lemma 1.21.(a)-(b).

Lemma 1.23. E-HAω∗
st proves that

∀s : σ∗
(
st(|s|) ∧ ∀i < |s| st(si)→ st(s)

)
.
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Proof. Suppose s : σ∗ is finite, and that, for all i < |s|, si is standard. By an iteration of
Lemma 1.21.(d), s′ := s0 · . . . · s|s|−1 is also standard. Clearly, s and s′ are extensionally
equal; by Corollary 1.12, s = s′. Thus, s is standard.

This, in turn, is used to prove an external induction schema for sequences.

Proposition 1.24. E-HAω∗
st proves the external induction schema for sequences

IA∗st :
(
Φ(〈〉σ) ∧ ∀stx : σ ∀sts : σ∗ (Φ(s)→ Φ(Cxs))

)
→ ∀sts : σ∗Φ(s) .

Proof. From the previous lemma, one obtains that if s = Cxt and s is standard, then
x and t are also standard. Then one argues precisely as in Proposition 1.9, applying
external instead of ordinary induction.

Enough with the preliminaries - we are now ready to discuss actual nonstandard
arithmetic; starting with the principle that supplies us with “enough” nonstandard ele-
ments.

1.3 The overspill principle

Of course, we want nonstandard numbers to exist; no need to explain why. But how
should the transition from standard to nonstandard happen?

We are already able to prove, in E-HAω∗
st , that there is no smallest nonstandard

natural number. By ordinary induction, one proves that every number n > 0 has a
predecessor, n − 1. Suppose ¬ st0(n). If n − 1 were standard, then also n − 1 + 1 = n
would be standard, for the successor function is. Therefore, ¬ st0(n− 1).

More generally, we do not want to be able to discriminate between standard and
nonstandard by internal means; for otherwise, what would be the point of introducing
the external language at all? So, for instance, an internal property that holds up to any
standard number should also hold up to some nonstandard, “hyperfinite” number.

The overspill principle takes care of this for type 0:

OS0 : ∀stn : 0ϕ(n)→ ∃n : 0 (¬ st(n) ∧ ϕ(n)) .

Remark. Unless we specify otherwise, all the principles we consider may have additional
parameters besides those explicitly shown.

The first benchmark of any respectable nonstandard proof system is met.

Proposition 1.25. In E-HAω∗
st , the principle OS0 implies that nonstandard natural

numbers exist:
∃n : 0¬ st(n) .

Proof. Apply OS0 with ϕ(n) := n = n, or any other tautology.

One would want to extend overspill to all finite types. The obvious strategy would
be to just formulate it with no type restriction:

OS : ∀stx : σ ϕ(x)→ ∃x : σ (¬ st(x) ∧ ϕ(x)) .

As it turns out, this does not seem to be very useful. The reason is that overspill is
almost always applied to formulae like

∀stn : 0∀k < nϕ(k) ,

stating that some internal property holds up to any finite number.
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Example 1.26. This is taken from [46]. Let G be a countably infinite graph; in our
setting, a function G : 0→ 0→ 0, such that

∀i, j : 0 (Gij = 0 ∨Gij = 1) .

For all n : 0, we say that a n-colouring of G is a function c : 0→ 0 such that

∀i : 0 (ci < n) ∧ ∀i, j : 0 (Gij = 1→ ¬ (ci = cj)) .

Suppose that any finite subgraph of G can be n-coloured. This can be stated as follows:

∀stk : 0∃c : 0→ 0
(
∀i < k (ci < n) ∧ ∀i, j < k (Gij = 1→ ¬ (ci = cj))

)
.

Then, by overspill, there exist a nonstandard k and an n-colouring c such that

∀i < k (ci < n) ∧ ∀i, j < k (Gij = 1→ ¬ (ci = cj)) ,

implying
∀sti : 0 (ci < n) ∧ ∀sti, j : 0 (Gij = 1→ ¬ (ci = cj)) .

With a suitable transfer principle (namely, TP∀ of Section 1.5), we would be able to turn
external into ordinary quantifiers, and derive that G has a n-colouring. This is known
as the de Bruijn-Erdős theorem.

So, the specificity of type 0 is that, when something holds up to a nonstandard
number, it holds for all standard numbers. Given a nonstandard n : 0, we can define a
hyperfinite sequence

s := 〈0〉 · . . . · 〈n〉

of type 0∗, with the property that s contains all standard natural numbers. This can be
fruitfully generalised.

Definition 1.27. Let s : σ∗. We say that s is a hyperfinite enumeration of the type σ
if

∀stx : σ (x ∈ s) .

We introduce, for all types σ, a defined predicate hyper(s), such that

∀s : σ∗ (hyper(s)↔ ∀stx : σ (x ∈ s)) ,

as well as quantifiers ranging over hyperfinite enumerations, with defining axioms

∀hyps : σ∗Φ(s)↔ ∀s : σ∗ (hyperσ(s)→ Φ(s)) ,

∃hyps : σ∗Φ(s)↔ ∃s : σ∗ (hyperσ(s) ∧ Φ(s)) .

This yields a definitional extension of E-HAω∗
st , for which we keep the name.

Lemma 1.28. E-HAω∗
st proves that

∀sts : σ∗ ∃stx : σ ¬x ∈ s .

Proof. Since standard sequences are finite, this amounts to showing that the standard
elements of finite types are not Kuratowski-finite, i.e. do not admit finite enumerations.
This is trivial for type 0; then one proceeds by induction on the type structure.
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Corollary 1.29. E-HAω∗
st ` ∀s : σ∗ ¬ (st(s) ∧ hyper(s)) .

We introduce the principle of sequence overspill:

OS∗ : ∀sts : σ∗ ϕ(s)→ ∃hyps : σ∗ ϕ(s) .

Proposition 1.30. In E-HAω∗
st , the principle OS∗ implies that hyperfinite enumerations

exist for all types:
∃s : σ∗ hyper(s) .

Proof. As in Proposition 1.25: apply OS∗ with ϕ(s) := s = s.

Proposition 1.31. In E-HAω∗
st , the principle OS∗ implies for all types σ the following

equivalence, dubbed enumeration overspill:

EOS : ∀stx : σ ϕ(x)↔ ∃hyps : σ∗ ∀x ∈ sϕ(x).

Proof. Suppose ∀stx : σ ϕ(x). By Lemma 1.21.(c), this implies

∀sts : σ∗ ∀x ∈ sϕ(x) .

Then ∃hyps : σ∗ ∀x ∈ sϕ(x) follows by sequence overspill. The right to left direction is
trivial.

The relevance of sequence overspill will now become apparent. Consider the following,
typed version of Nelson’s idealisation:

I : ∀sts : σ∗ ∃y : τ ∀x ∈ sϕ(x, y)→ ∃y : τ ∀stx : σ ϕ(x, y) .

It so happens that these two principles are equivalent !

Proposition 1.32. E-HAω∗
st ` I↔ OS∗ .

Proof. Assume I, and suppose ∀sts : σ∗ ϕ(s). Let t : (σ∗)∗ be a standard sequence of
sequences; then s := t0 · . . . · t|t|−1 is again standard, so ϕ(s) holds. Furthermore, by
construction, for all i < |t|, ti ⊆ s; in other words,

∀stt : (σ∗)∗ ∃s : σ∗ ∀t′ ∈ t (t′ ⊆ s ∧ ϕ(s)) .

By idealisation, we obtain

∃s : σ∗ ∀stt : σ∗ (t ⊆ s ∧ ϕ(s)) .

It remains to prove that ∀stt : σ∗ (t ⊆ s) ↔ hyper(s), an easy consequence of Lemma
1.21.

Conversely, assume OS∗, and suppose ∀sts : σ∗ ∃y : τ ∀x ∈ sϕ(x, y). By sequence
overspill, it follows that

∃y : τ ∃hyps : σ∗ ∀x ∈ sϕ(x, y) ,

which implies
∃y : τ ∀stx : σ∗ ϕ(x, y) .

This concludes the proof.
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Several consequences of I are listed in [46] and in [64], which, by the previous propo-
sition, are also consequences of OS∗.

Proposition 1.33. In E-HAω∗
st , OS∗ implies that

∀hyps : σ∗ ∃x ∈ s (¬ st(x)) ;

every hyperfinite enumeration also enumerates some nonstandard elements.

Proof. Assume, equivalently, idealisation, and let s be a hyperfinite enumeration of the
type σ. By Corollary 1.29, s cannot be extensionally equal to any standard sequence t;
hence,

∀stt : σ∗ ∃x : σ ∀y ∈ t (x ∈ s ∧ ¬x = y) .

By idealisation, it follows that

∃x : σ ∀sty : σ (x ∈ s ∧ ¬x = y) ,

which implies ∃x ∈ s (¬ st(x)) .

Corollary 1.34. In E-HAω∗
st , the principle OS∗ implies OS.

Proof. Suppose ∀stx : σ ϕ(x). By enumeration overspill, ∃hyps : σ∗ ∀x ∈ sϕ(x); by the
previous proposition, any such sequence s contains a nonstandard element.

Corollary 1.35. In E-HAω∗
st , the principle OS∗ implies that nonstandard elements of

any type exist:

∃x : σ ¬ st(x) .

The following is the first example of an external version of a principle that is re-
jected by strict constructivism, yet implied by a nonstandard principle. The functional
interpretations of next chapter will, nevertheless, give it a constructive justification.

The lesser limited principle of omniscience for natural numbers is usually stated as
follows:

LLPO0 : ∀a, b : 0→ 0
(
∀n,m : 0 (an = 0∨bm = 0)→ (∀n : 0 an = 0 ∨ ∀n : 0 bn = 0)

)
.

Informally, this amounts to the following. Take any pair of sequences of natural numbers.
Pick a position in the first, and a position in the second. If, for all possible choices, you
find at least one zero, then one of the sequences is constantly zero.

This is called a “principle of omniscience”, because it enables one to pass from
a partial, finite view of the sequence, to a global, “infinitary” knowledge of it. Within
Bishop-style, informal constructive reasoning, it is known to be equivalent to a surprising
number of classical theorems, including

(i) the real numbers being an integral domain;

(ii) the Weak König Lemma, that every infinite binary tree has an infinite path;

(iii) the intermediate value theorem of classical analysis;

(iv) the Hahn-Banach theorem of functional analysis.
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Even more equivalences are listed in [21]. We will see now that sequence overspill implies
the following, external generalisation of LLPO0 to all finite types:

LLPOst : ∀stx, y : σ (ϕ(x) ∨ ψ(y))→ (∀stx : σ ϕ(x) ∨ ∀stx : σ ψ(x)) .

Proposition 1.36. E-HAω∗
st + OS∗ ` LLPOst .

Proof. Suppose ∀stx, y : σ (ϕ(x) ∨ ψ(y)). We prove by external sequence induction that

∀sts : σ∗ (∀x ∈ sϕ(x) ∨ ∀x ∈ sψ(x)) . (1.1)

For s = 〈〉σ, ∀x ∈ sϕ(x) ∨ ∀x ∈ sψ(x) is vacuously true. Suppose it is true for some
arbitrary, standard s, and pick any standard a : σ.

Suppose ∀x ∈ sϕ(x), and pick b ∈ Cas. Since

∀stx : σ (ϕ(a) ∨ ψ(x)) ,

either ϕ(a) holds, in which case we are done, or ψ(b) holds. In the latter case, since b
was arbitrary in Cas,

∀x ∈ Casψ(x) ,

and again we achieve the desired disjunction. Now, applying sequence overspill to (1.1)
gives

∃hyps : σ∗ (∀x ∈ sϕ(x) ∨ ∀x ∈ sψ(x)) ,

which implies LLPOst.

Notice that OS0 alone would have sufficed to prove the restriction of LLPOst to type
0; unsurprisingly, as sequence overspill collapses to ordinary overspill in type 0.

It seems likely to us that LLPOst implies results that are analogous to those proved
by its internal version, but confirming this goes beyond the scope of this thesis.

1.4 The underspill principle

Classically, the overspill principle is equivalent to its dual, the underspill principle:

US0 : ∀n : 0 (¬ st(n)→ ϕ(n))→ ∃stn : 0ϕ(n) .

Intuitionistically, this does not seem to be the case.

Underspill also has a direct generalisation to higher types, viz.

US : ∀x : σ (¬ st(x)→ ϕ(x))→ ∃stx : σ ϕ(x) ,

for which, much like OS, we did not find any use.

One of the most common uses of overspill and underspill is giving suggestive non-
standard characterisations of notions from standard mathematics, as in the following
example.
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Example 1.37. For once, we will make a completely informal use of constructive rea-
soning; no particular metatheory is implied.

Let (X, dX) and (Y, dY ) be metric spaces. Then the usual definition of uniform
continuity of a function f : X → Y , translated to the nonstandard setting, is

∀stn ∃stm ∀x, x′ ∈ X
(
dX(x, x′) <

1

m
→ dY (f(x), f(x′)) <

1

n

)
.

However, a tale is often told that what this actually means is that f carries “infinitely
close” points of X to “infinitely close” points of Y . With nonstandard analysis, one can
make this rigorous, and introduce a relation

x 'X x′ if and only if ∀stn dX(x, x′) <
1

n
,

to be read “x and x′ are infinitely close in X”. Suppose that f is such that

∀x, x′ ∈ X (x 'X x′ → f(x) 'Y f(x′)) .

Expanding the definition, applying the overspill principle to the premise of the implica-
tion, and using intuitionistic logic to move quantifiers to the front, we obtain

∀stn ∀m
(
¬ st(m)→ ∀x, x′ ∈ X

(
dX(x, x′) <

1

m
→ dY (f(x), f(x′)) <

1

n

))
.

By underspill, this gives the traditional definition of uniform continuity. The converse
statement is easy, so the two characterisations really are equivalent.

On to the useful generalisation of underspill to higher types - sequence underspill:

US∗ : ∀hyps : σ∗ ϕ(s)→ ∃sts : σ∗ ϕ(s) .

Proposition 1.38. In E-HAω∗
st , the principle US∗ implies for all types σ the following

equivalence, dubbed enumeration underspill:

EUS : ∀hyps : σ∗ ∃x ∈ sϕ(x)↔ ∃stx : σ ϕ(x).

Proof. Suppose ∀hyps : σ∗ ∃x ∈ sϕ(x). By sequence underspill, ∃sts : σ∗ ∃x ∈ sϕ(x).
Lemma 1.21.(c) then leads to the conclusion. The converse is immediate.

Unlike sequence overspill, sequence underspill does not seem to imply the “useless”
version in all types; it still needs overspill for that purpose.

Proposition 1.39. E-HAω∗
st + OS∗ ` EUS→ US .

Proof. Suppose ∀x : σ (¬ st(x)→ ϕ(x)). By Proposition 1.33, sequence overspill implies
∀hyps : σ∗ ∃x ∈ s (¬ st(x)) ; therefore, by the hypothesis,

∀hyps : σ∗ ∃x ∈ sϕ(x) .

By enumeration underspill, this is equivalent to ∃stx : σ ϕ(x).
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Enumeration underspill has the intuitive meaning that “the intersection of all hyper-
finite enumerations are the standard elements”; there are no elements that stand out,
leaking into as soon as we step into nonstandard territory.

There is an intriguing consequence of the pair EOS + EUS. The functional inter-
pretations from Chapter 2 will translate external formulae Φ into formulae that look
like

∃stx : σ ∀sty : τ ϕ(x, y) ,

with ϕ internal. With EOS and EUS, these turn out to be equivalent to

∃hypt : τ∗ ∀hyps : σ∗ ∃x ∈ s∀y ∈ t ϕ(x, y) .

We do not know, however, whether there is something deeper in this observation.

Idealisation also has a dual, named realisation in [64]:

R : ∀y : τ ∃stx : σ ϕ(x, y)→ ∃sts : σ∗ ∀y : τ ∃x ∈ sϕ(x, y) .

Since I is equivalent to OS∗, it would make sense if R were equivalent to US∗; yet things
are not so simple. In fact, only one implication seems to hold.

Proposition 1.40. E-HAω∗
st + US∗ ` R .

Proof. Suppose ∀y : τ ∃stx : σ ϕ(x, y). By enumeration underspill, this is equivalent to

∀hyps : σ∗ ∀y : τ ∃x ∈ sϕ(x, y) ,

which, by sequence underspill, implies ∃sts : σ∗ ∀y : τ ∃x ∈ sϕ(x, y).

What is missing, in order to obtain an equivalence, is the following principle, boldly
called the herbrandised generalised Markov’s principle in [64]:

HGMPst : (∀stx : σ ϕ(x)→ ψ)→ ∃sts : σ∗ (∀x ∈ sϕ(x)→ ψ) .

There will be time, later, to explain “herbrandised”; Markov’s principle, on the other
hand, is another axiom schema strict constructivists reject: in type 0, it says

MP0 :
(
∀n : 0 (ϕ(n) ∨ ¬ϕ(n)) ∧ ¬¬∃n : 0ϕ(n)

)
→ ∃n : 0ϕ(n) .

One important consequence of Markov’s principle is that if we derive a contradiction
from a real number not being greater than 0, then it is greater than 0:

∀x ∈ R (¬¬x > 0→ x > 0) .

Replacing ψ with a contradiction, e.g. 0 =0 1, and choosing a negated ϕ(x), we see
that HGMPst implies an external version of Markov’s principle in all finite types:

MPst :
(
∀stx : σ (ϕ(x) ∨ ¬ϕ(x)) ∧ ¬¬∃stx : σ ϕ(x)

)
→ ∃stx : σ ϕ(x) ,

which justifies its name.

Proposition 1.41. E-HAω∗
st + US∗ ` HGMPst .
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Proof. Suppose ∀stx : σ ϕ(x)→ ψ. Then

∃hyps : σ∗ ∀x ∈ sϕ(x)→ ψ ,

which is intuitionistically equivalent to

∀hyps : σ∗ (∀x ∈ sϕ(x)→ ψ) .

An application of sequence underspill leads to the conclusion.

As for overspill and LLPO, notice that US0 is sufficient to prove the external Markov’s
principle for the type of natural numbers,

MPst
0 :

(
∀stn : 0 (ϕ(n) ∨ ¬ϕ(n)) ∧ ¬¬∃stn : 0ϕ(n)

)
→ ∃stn : 0ϕ(n) .

The previous result can actually be slightly strenghtened, to also provide a form of
independence of premise:

Proposition 1.42. In E-HAω∗
st , US∗ implies the principle

(∀stx : σ ϕ(x)→ ∃sty : τ ψ(y))→ ∃sts : σ∗ ∃stt : τ∗ (∀x ∈ sϕ(x)→ ∃y ∈ t ψ(y)) .

Proof. Suppose ∀stx : σ ϕ(x)→ ∃sty : τ ψ(y). Then

∃hyps : σ∗ ∀x ∈ sϕ(x)→ ∀hypt : τ∗ ∃y ∈ t ψ(y) ,

which, by intuitionistic logic, is equivalent to

∀hyps : σ∗ ∀hypt : τ∗ (∀x ∈ sϕ(x)→ ∃y ∈ t ψ(y)) .

Applying sequence underspill yields the desired result.

We now complete the characterisation of US∗.

Proposition 1.43. E-HAω∗
st + HGMPst + R ` US∗ .

Proof. Suppose ∀hyps : σ∗ ϕ(s); that is,

∀s : σ∗ (∀stx : σ (x ∈ s)→ ϕ(s)) .

By the herbrandised generalised Markov’s principle, this is equivalent to

∀s : σ∗ ∃stt : σ∗ (t ⊆ s→ ϕ(s)) ;

which, by realisation and intuitionistic logic, implies

∃stt : (σ∗)∗ ∀s : σ∗ (∀t′ ∈ t (t′ ⊆ s)→ ϕ(s)) .

Take a standard t : (σ∗)∗ as in (1.4), and pick s := t0 · . . . · t|t|−1. By Lemma 1.21, s
is standard, and, for all t′ ∈ t, t′ ⊆ s; therefore, it holds that ϕ(s). We thus prove

∃sts : σ∗ ϕ(s) ,

and the sequence overspill principle.
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In [64], I, HGMPst and a stronger, nonclassical version of R (see Section 1.6.2) were
used as characteristic principles for the Dst interpretation (Chapter 2). These can now
be eliminated in favour of US∗ and OS∗, which seem to us more intuitive, and more in
the spirit of nonstandard arithmetic in type 0.

Since both overspill and underspill force some nonconstructive modes of reasoning,
we wonder whether one could weaken them, in such a way that the resulting logic would
mirror more closely the usual constructivist practice; perhaps by introducing “layers” of
nonstandardness, such that overspill and underspill only “go through” some of them.

Some form of layering is suggested in [55], but we have not investigated the issue any
further.

1.5 Transfer principles and rules

In the model-theoretic approach to nonstandard arithmetic, transfer is usually formu-
lated as a theorem, expressing the fact that a certain embedding ι : N → ∗N of the
standard model into a nonstandard model is elementary : for all first order formulae of
arithmetic ϕ(x0, . . . , xk), and all natural numbers n0, . . . , nk,

N |= ϕ(n0, . . . , nk) if and only if ∗N |= ϕ(ιn0, . . . , ιnk) .

Of course, this is not viable in the syntactic approach; so internal set theory has a
transfer principle. In our setting, transfer gets decomposed into

TP∀ : ∀sty1 : τ1 . . . ∀styn : τn (∀stx : σ ϕ(x, y1, . . . , yn)→ ∀x : σ ϕ(x, y1, . . . , yn)) ,

and the classically, but not intuitionistically equivalent

TP∃ : ∀sty1 : τ1 . . . ∀styn : τn (∃x : σ ϕ(x, y1, . . . , yn)→ ∃stx : σ ϕ(x, y1, . . . , yn)) ,

where, for once, no unwritten parameters are allowed.
The constructive character of transfer principles has got somewhat more attention

in the literature than other nonstandard principles, being the main focus of [2] and
of parts of [37]. And for good reasons: it appears that even mild forms of transfer, in
conjunction with overspill and underspill, force classicality, or violate conservativity over
Heyting arithmetic.

The following is an adaptation, due to [64], of a result from [37].

Proposition 1.44. In E-HAω∗
st +TP∀, the existence of hyperfinite enumerations implies

the law of the excluded middle for all internal formulae.

Proof. We proceed by induction on the number of internal quantifiers of a formula ϕ. If
ϕ is atomic, then the axiom of extensionality can be used to eliminate equality at higher
types in favour of equality at type 0, which is decidable. This implies that all atomic
formulae are already decidable.

The propositional connectives preserve decidability, so it remains to discuss the case
of the quantifiers. Suppose ϕ(x, y) is an internal, decidable formula, where x : σ, and
y : τ is a placeholder for any additional parameters. By ordinary sequence induction,
we can prove

∀sty : τ ∀s : σ∗ (∀x ∈ sϕ(x, y) ∨ ∃x ∈ s¬ϕ(x, y)) . (1.2)
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Suppose a hyperfinite enumeration s of the type σ exists. Then (1.2) implies

∀sty : τ (∀stx : σ ϕ(x, y) ∨ ∃x : σ ¬ϕ(x, y)) .

Applying TP∀ once, we obtain

∀sty : τ (∀x : σ ϕ(x, y) ∨ ∃x : σ ¬ϕ(x, y)) ,

and, applying it again,

∀y : τ (∀x : σ ϕ(x, y) ∨ ∃x : σ ¬ϕ(x, y)) ,

which completes the induction step.

As usual, by the interchangeability of hyperfinite enumerations of the type 0 with
nonstandard natural numbers, the existence of the latter suffices to prove the law of the
excluded middle for all internal arithmetical formulae.

With underspill principles, things go even more wrong, as shown by [2].

Lemma 1.45. There exists a primitive recursive formula ϕ(n) of arithmetic such that

¬∀n¬ϕ(n)→ ∃nϕ(n)

is not provable in HA.

Proof. Let ∀n¬ϕ(n) be a Rosser sentence for HA, i.e. a sentence such that HA proves
neither it, nor its negation. Suppose

HA ` ¬∀n¬ϕ(n)→ ∃nϕ(n) .

As shown in [59, 3.1.7], HA is closed under the following independence of premise rule:

IPRc :
¬ψ → ∃nϕ(n)

∃n (¬ψ → ϕ(n))
,

where ψ is required to be closed. Thus, by the existence property of HA, we can find n̄
such that

¬∀n¬ϕ(n)→ ϕ(n̄) . (1.3)

Since ϕ(n) is primitive recursive, either HA ` ϕ(n̄) or HA ` ¬ϕ(n̄). In the first case,

HA ` ¬∀n¬ϕ(n) ;

in the second, by (1.3),
HA ` ¬¬∀n¬ϕ(n) ,

or, equivalently, HA ` ∀n¬ϕ(n) . But this contradicts ∀n¬ϕ(n) being a Rosser sen-
tence.

Proposition 1.46. In E-HAω∗
st + US0, there exist primitive recursive arithmetical for-

mulae ϕ(n), ψ(n) such that either one of the axioms

∀stn : 0ϕ(n)→ ∀n : 0ϕ(n) , (1.4)

∃n : 0ψ(n)→ ∃stn : 0ψ(n) (1.5)

destroys conservativity over E-HAω∗.
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Proof. By our comment beneath Proposition 1.41,

E-HAω∗
st + US0 ` MPst

0 .

Therefore, taking ϕ(n) as in the previous lemma, we can prove in E-HAω∗
st + US0

¬∀stn¬ϕ(n)→ ∃stnϕ(n) .

Assuming (1.4), we would be able to derive

¬∀n¬ϕ(n)→ ∃nϕ(n) ,

which, in E-HAω∗, we can not. The claim about (1.5) also follows with ψ(n) := ¬ϕ(n),
by ¬¬-stability of primitive recursive formulae.

It would seem that transfer principles are a no-go - one can hardly get any weaker.
So, why not make them rules?

TR∀ :
∀stx : σ ϕ(x)

∀x : σ ϕ(x)
,

TR∃ :
∃x : σ ϕ(x)

∃stx : σ ϕ(x)
.

We will see in Chapter 2, thanks to the Dst interpretation, that this really is feasible;
unless otherwise specified, we will take for granted that the systems of nonstandard
arithmetic we consider are closed under these rules.

However, [2] again rules out several possible strenghtenings, at least in the presence
of an overspill principle.

Lemma 1.47. There exist primitive recursive arithmetical formulae ϕ(n), ψ(n) such
that

HA ` ∀n,m (ϕ(n) ∨ ψ(m))

yet
HA 6` ∀nϕ(n) ∨ ∀nψ(n) .

Proof. See [2, Lemma 5.5].

Proposition 1.48. There exist primitive recursive arithmetical formulae ϕ(n), ψ(n)
such that

E-HAω∗
st + OS0 ` ∀stn : 0ϕ(n) ∨ ∀stn : 0ψ(n) ,

yet
E-HAω∗ 6` ∀n : 0ϕ(n) ∨ ∀n : 0ψ(n) .

Proof. Take ϕ(n), ψ(n) as in the previous lemma. Clearly,

E-HAω∗
st ` ∀stn,m : 0 (ϕ(n) ∨ ψ(m)) .

By our comment beneath Proposition 1.36,

E-HAω∗
st + OS0 ` LLPOst

0 ,

whence
E-HAω∗

st + OS0 ` ∀stn : 0ϕ(n) ∨ ∀stn : 0ψ(n) .

The thesis follows by the previous lemma.
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Corollary 1.49. There exists a primitive recursive arithmetical formula χ(z, n) such
that

E-HAω∗
st + OS0 ` ∃stz : 0∀stn : 0χ(z, n) ,

yet

E-HAω∗ 6` ∃z : 0∀n : 0χ(z, n) .

Proof. Take χ(z, n) := (z = 0 ∧ ϕ(n)) ∨ (z = 1 ∧ ψ(n)), with ϕ(n) and ψ(n) as in the
previous proposition.

Corollary 1.50. The system E-HAω∗
st + OS0 does not have the disjunction property.

Proof. By Proposition 1.48, the system proves ∀stn : 0ϕ(n) ∨ ∀stn : 0ψ(n). By closure
under TR∀, though, it cannot prove either disjunct.

Corollary 1.51. The system E-HAω∗
st + OS0 does not have the existence property - not

even restricted to formulae

∃stn : 0ψ(n) .

Proof. Follows from Corollary 1.49.

Finally, one could consider the following rule:

TR∀∃ :
∀x : σ ∃y : τ ϕ(x, y)

∀stx : σ ∃sty : τ ϕ(x, y)
.

In fact, this is satisfied by the topos model of nonstandard arithmetic from Chapter 3,
which may indicate that it is constructively acceptable. However, for now we do not
know if it is derivable from our proof systems.

1.6 Saturation and uniformity

1.6.1 Saturation principles

One of the most celebrated results of nonstandard analysis has been the construction of
Loeb measures [33], which have some interesting applications to probability theory and
abstract measure theory. This construction utilises a property of certain nonstandard
extensions, called countable saturation.

In our context, countable saturation is the principle

CSAT : ∀stn : 0∃y : τ Φ(n, y)→ ∃f : 0→ τ ∀stn : 0 Φ(n, fn) .

This has a straightforward generalisation to arbitrary finite types:

SAT : ∀stx : σ ∃y : τ Φ(x, y)→ ∃f : σ → τ ∀stx : σΦ(x, fx) .

As mentioned in [64], countable saturation has a Dst interpretation. No such result
is known for the general saturation principle, and we have not looked into it.

We have adapted, though, the result of [48] that a combination of saturation and
overspill implies an extension of LLPOst to certain external formulae.
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Proposition 1.52. In E-HAω∗
st +US∗, the principle SAT implies the following principle

of omniscience: suppose Φ(x), Ψ(x), x : σ, are external formulae such that

∀stx : σ (Φ(x) ∨ ¬Φ(x)) , ∀stx : σ (Ψ(x) ∨ ¬Ψ(x)) ;

then

∀stx, y : σ (Φ(x) ∨Ψ(y))→ (∀stx : σΦ(x) ∨ ∀stx : σΨ(x)) .

Proof. Proceeding by external sequence induction, much like in Proposition 1.36, we can
prove

∀sts : σ∗ (∀x ∈ sΦ(x) ∨ ∀x ∈ sΨ(x)) . (1.6)

By the decidability of Φ, Ψ for standard values of x, we have

∀stx : σ ∃z : 0 (z = 0↔ Φ(x)) , ∀stx : σ ∃z : 0 (z = 0↔ Ψ(x)) .

By saturation, then, we can find f, g : σ → 0 such that

∀stx : σ (fx = 0↔ Φ(x)) , ∀stx : σ (gx = 0↔ Ψ(x)) ,

and, substituting into (1.6),

∀sts : σ∗ (∀x ∈ s fx = 0 ∨ ∀x ∈ s gx = 0) .

The formula between brackets is now internal: we can apply sequence overspill, reaching
the desired conclusion.

As usual, US0 and CSAT are sufficient for the corresponding result in type 0.

1.6.2 Uniformity principles

This section makes a slight detour from the theme of this chapter: the principles we are
going to discuss have nothing particularly “nonstandard” about them. The functional
interpretations from next chapter will, however, validate them; so this may be regarded
as a bridge between what has been, and what follows.

In Section 1.4, we have used the adjective herbrandised, perhaps improperly, with
reference to HGMPst. Although there is no need to make it rigorous, the term deserves
an explanation.

An idea, that will be further developed in Chapter 2, is that the distinction between
external and ordinary quantifiers should be a distinction between computational and non-
computational quantifiers, respectively; that is, quantifiers that carry some constructive
information, and others that are void of it. So it should be the former that correspond
to the usual intuitionistic quantifiers.

In the context of functional interpretations, many useful principles enable one to
derive, from the premise

. . . ∃sty : τ Φ(x, y) . . . ,

where x : σ is a placeholder for any set of additional variables, the consequence

∃stf : σ → τ (. . . Φ(x, fx) . . .) . (1.7)
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A soundness theorem then guarantees that one can extract from proofs a closed term f̄
such that

. . . Φ(x, f̄x) . . . ;

such an f is called a realiser for the premise, and confirms the computational quality of
the quantifier.

The herbrandised version of such a principle is the one where (1.7) is replaced by

∃stf : (σ → τ∗)∗ (. . . ∃y ∈ f [x] Φ(x, y) . . .) ;

so that, in order the realise the premise, one needs to provide a finite sequence of potential
realisers, of which at least one is an actual realiser. This is reminiscent of Herbrand
disjunctions in classical logic - whence the name.

For instance, this is the external axiom of choice:

ACst : ∀stx : σ ∃sty : τ Φ(x, y)→ ∃stf : σ → τ ∀stx : σΦ(x, fx) ;

and this is the herbrandised axiom of choice:

HACst : ∀stx : σ ∃sty : τ Φ(x, y)→ ∃st(f : σ → τ∗)∗ ∀stx : σ ∃y ∈ f [x] Φ(x, y) .

Such versions are the ones that turn out to be compatible with conservativity of systems
of nonstandard arithmetic.

We are interested in the following principle - nonclassical realisation:

NCR : ∀y : τ ∃stx : σΦ(x, y)→ ∃sts : σ∗ ∀y : τ ∃x ∈ sΦ(x, y) .

A remarkable consequence of NCR is that it forces nonclassicality.

Proposition 1.53. In E-HAω∗
st , the principle NCR implies, for all types, that the stan-

dardness predicate is undecidable:

¬∀x : σ (st(x) ∨ ¬ st(x)) .

Proof. Suppose ∀x : σ (st(x) ∨ ¬ st(x)). It would then follow that

∀y : σ ∃stx : σ (st(y)→ x = y) .

By nonclassical realisation,

∃sts : σ∗ ∀y : σ ∃x ∈ s (st(y)→ x = y) ,

which is the statement that there are only finitely many elements of type σ; a contra-
diction.

In [64], NCR has been classified as a strenghtening of R, which is reasonable. However,
the analysis of the next chapters suggests that it is, more properly, the herbrandisation
of the following nonstandard uniformity principle:

NU : ∀y : τ ∃stx : σΦ(x, y)→ ∃stx : σ ∀y : τ Φ(x, y) .

Nonstandard uniformity is strongly nonclassical, and is, in fact, inconsistent with E-
HAω∗

st .
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Proposition 1.54. In E-HAω∗
st , the principle NU implies

¬∀n : 0 (n = 0 ∨ ¬n = 0) ,

hence a contradiction.

Proof. Suppose ∀n : 0 (n = 0 ∨ ¬n = 0). This is intuitionistically equivalent to

∀n : 0∃stz : 0 (z = 0→ n = 0 ∧ ¬ z = 0→ ¬n = 0) ,

which, by nonstandard uniformity, implies

∃stz : 0∀n : 0 (z = 0→ n = 0 ∧ ¬ z = 0→ ¬n = 0) ,

the statement that all natural numbers are zero, or all are non-zero; a contradiction.

The way out of contradiction is to consider the system E-HAω∗
st∨ , where the ordinary

induction schema is limited to internal and ∨-free formulae.

Notation. If P is an axiom schema where certain schematic variables range over
internal formulae of E-HAω∗

st , we write P∨ for the same axiom schema, where
“internal” is replaced by “internal and ∨-free”.

So, in E-HAω∗
st∨, IA is replaced by IA∨. Notice that, by external induction, one can still

derive
∀stn : 0 (n = 0 ∨ ¬n = 0)

and all other statements provable by ordinary induction, with quantifiers restricted to
standard elements. Conservativity over Heyting arithmetic is now limited to formulae
without disjunctions.

The reason why we called this a uniformity principle is the similarity of

∀s : 0∗ ∃stn : 0 Φ(s, n)→ ∃stn : 0∀s : 0∗Φ(s, n)

to Troelstra’s uniformity principle [60, Proposition 8.21]

UP : ∀S ⊆ N ∃n ∈ NΦ(S, n)→ ∃n ∈ N ∀S ⊆ NΦ(S, n) ,

a second-order principle that is validated by higher-order versions of recursive realisabil-
ity.

At this point, of course, we are way past nonstandard arithmetic, and fully within
the domain of next chapter.
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Functional interpretations

In this chapter:

. We recall a few basic facts about Gödel’s Dialectica, the forefather of all functional
interpretations, and its variant by Diller and Nahm, dispensing with decidability
of atomic predicates. - Section 2.1

. We trace a concise history of the idea of having two kinds of quantifiers: compu-
tational, and noncomputational, or uniform; from Lifschitz’s philosophical moti-
vations, to its revival through optimised proof mining. - Section 2.2

. We define a new functional interpretation, an extension of the Diller-Nahm inter-
pretation with uniform quantifiers. We prove its basic properties, and describe its
virtues and shortcomings. - Sections 2.2, 2.3

. We review the nonstandard Dialectica interpretation of [64], as a herbrandised
version of uniform Diller-Nahm. - Section 2.4

2.1 The Dialectica and Diller-Nahm interpretations

The term functional interpretation is often used synonimously with Gödel’s Dialectica
interpretation. This is the subject of a chapter in many books on proof theory, e.g. [1], so
one should refer to those, more complete treatments; but it seems fit to say something at
least, as an introduction to our nonstandard variants, about the functional interpretation
par excellence.

It was introduced in 1958, [15], a rare example of a mathematical object getting its
popular name from the journal where it was first published. It provided a translation of
formulae of what we now know as Heyting arithmetic in all finite types, into a quantifier-
free fragment of the same system; such that, from an intuitionistic proof of a formula ϕ,
one could extract a closed term - a functional of finite type - that “realises” its translation
ϕD.

As discussed in [14], the motivation behind Gödel’s article was two-fold. There was,
of course, an immediate technical advantage - first of all, a simple relative consistency
proof: the standard contradiction 0 =0 1 is interpreted as itself, so if one system proves
it, than the other does too; and then a plethora of closure and consistency results for
Heyting arithmetic, exhaustively catalogued in [59].

27
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But a foundational intent appeared predominant, of substituting the underdefined
intuitionistic notion of “proof” with that of “computable functional of finite type”,
which, albeit abstract as well, seems more precise, and more in the spirit of Hilbert’s
programme of finitary foundations of mathematics.

When it seemed that Dialectica had run out of possibilities, only a partial success with
respect to its goals, it came to an unexpected revival, through the so-called programme
of proof mining.

Proof mining is the recent rebranding [27] of Kreisel’s programme of unwinding
proofs, which he advanced as early as in 1951 [28]; the idea that some constructive
content may be “hidden” within non-constructive proofs, and that through syntactic
elaboration one can extract it. With its capability of locally composing realisers at
each step of a proof, as opposed to techniques such as cut-elimination, the Dialectica
interpretation (possibly composed with the negative translation of Peano into Heyting
arithmetic) turned out to be a valid, and computationally feasible tool for that purpose.
Much of [26] is devoted to these applications.

We will now define the Dialectica translation; but first, we need to address some
formalities about notation for tuples of types and terms, which we postponed in the first
chapter.

Notation. We write σ := σ1, . . . , σn, x : σ := x0 : σ0, . . . , xn : σn for tuples of
types and terms. [ ] stands for the empty tuple. We write

fx := (. . . (fx0)x1) . . .)xn ,

with the appropriate types; while, if f := f0, . . . , fm, fx stands for f0x, . . . , fmx.
We will have, correspondingly,

λx.f := λx.f0, . . . λx.fm ,

and the same for sequence application.

Relations distribute as expected: for instance, if y := y0, . . . , yn, with the same
length and types as x,

x =σ y :=

n∧
i=0

xi =σi yi ;

and if s := s0 : σ∗0, . . . , sn : σ∗n is a tuple of sequences,

x ∈σ s :=
n∧
i=0

xi ∈σi si .

Definition 2.1. To every formula ϕ(a) of L(WE-HAω), with free variables a, we asso-
ciate inductively its Dialectica translation ϕ(a)D = ∃x ∀y ϕD(x, y, a).

. ϕ(a)D := ϕD(a) := ϕ(a), for ϕ atomic.

Let ϕ(a)D = ∃x ∀y ϕD(x, y, a), ψ(b)D = ∃u∀v ψD(u, v, b):

. (ϕ(a) ∧ ψ(b))D := ∃x, u∀y, v
(
ϕD(x, y, a) ∧ ψD(u, v, b)

)
;

. (ϕ(a) ∨ ψ(b))D := ∃z : 0, x, u∀y, v
(
z = 0→ ϕD(x, y, a) ∧ ¬ z = 0→ ψD(u, v, b)

)
;
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. (ϕ(a)→ ψ(b))D := ∃U, Y ∀x, v
(
ϕD(x, Y xv, a)→ ψD(Ux, v, b)

)
;

. (∃z ϕ(z, a))D := ∃z, x∀y ϕD(x, y, z, a) ;

. (∀z ϕ(z, a))D := ∃X ∀y, z ϕD(Xz, y, z, a) .

All formulae are classically equivalent to their Dialectica-translated counterparts,
provided one includes the axiom of choice in “classicality”; and, in fact, even intuition-
istically, the clauses for ∧, ∨ and ∃z preserve equivalence.

The clause for implication is manifestly the most interesting one, and deserves a
step-by-step analysis. One starts with

∃x ∀y ϕD(x, y)→ ∃u∀v ψD(u, v) ;

this is intuitionistically equivalent to

∀x
(
∀y ϕD(x, y)→ ∃u∀v ψD(u, v)

)
. (2.1)

Suppose we have at hand the following, restricted independence of premise principle:

IP∀ : (∀x : σ ϕqf(x)→ ∃y : τ ψ(y))→ ∃y : τ (∀x : σ ϕqf(x)→ ψ(y)) ,

where ϕqf(x) is quantifier-free (that is, ∀x : σ ϕqf(x) is purely universal); then (2.1)
becomes equivalent to

∀x ∃u∀v
(
∀y ϕD(x, y)→ ψD(u, v)

)
.

By classical logic, we would derive ∀x ∃u∀v ∃y
(
ϕD(x, y)→ ψD(u, v)

)
; thus, intuitionis-

tically, we obtain

∀x ∃u∀v ¬¬∃y
(
ϕD(x, y)→ ψD(u, v)

)
.

In order to proceed, we need yet another nonconstructive principle; a version of Markov’s
principle:

MP′ : ¬¬∃x : σ ϕqf(x)→ ∃x : σ ϕqf(x) .

Notice that, in this setting, quantifier free formulae are decidable. With MP′, we derive

∀x ∃u∀v ∃y
(
ϕD(x, y)→ ψD(u, v)

)
;

so with two applications of the axiom of choice

AC : ∀x : σ ∃y : τ ϕ(x, y)→ ∃f : σ → τ ∀x : σ ϕ(x, fx)

we get the Dialectica interpretation of implication.

Of course, there are many classically equivalent choices for ∃ ∀-prenexation, so one
may wonder why we should choose these particular ones. However, as explained in [59,
3.5.3], these choices are those with the weakest logical complexity, and in a quite strong
sense: any other choice leads to the interpretation of A → A, for suitable A, requiring
non-recursive realisers.

The following is the fundamental theorem about the Dialectica translation.



30 Chapter 2 Functional interpretations

Theorem 2.2 (Soundness of the Dialectica interpretation). Suppose

WE-HAω ` ϕ(a) ,

with ϕ(a)D = ∃x ∀y ϕD(x, y, a). Then from the proof we can extract a tuple of closed
terms t such that

WE-HAω ` ∀y ϕD(t, y, a) .

Proof. See [59, 3.5.4].

We have tacitly assumed the weakly extensional variant of Heyting arithmetic in all
finite types as our base system. This is because the extensionality axioms for types of
degree higher than 1 are not Dialectica-interpretable, as shown by [18]. The intensional
variant would also be fine, but it is not our concern.

The principles we introduced earlier to justify the interpretation of implication are
in fact characteristic of the D-translation.

Theorem 2.3 (Characterisation of the Dialectica interpretation). For all formulae ϕ
in the language of WE-HAω,

WE-HAω + IP∀ + MP′ + AC ` ϕ↔ ϕD .

Moreover, if WE-HAω + IP∀ + MP′ + AC ` ϕ(a), then one can extract from the proof
closed terms t such that

WE-HAω ` ∀y ϕD(t, y, a) .

Proof. See [59, 3.5.10]. But we already handled the least obvious case of implication.

It follows that the Dialectica translation can also be used as a means to eliminate
these nonconstructive principles from proofs, providing a sort of an intuitionistic justi-
fication to their use.

The aches with extensionality, however, are not the only issue with Dialectica. One
may want, for instance, to apply a Dialectica-like translation to theories whose atomic
formulae are not all decidable. With the plain D-translation of implication, one cannot;
but this is not due to some fundamental character of the interpretation, compelling one
to call for decidability in all sorts of situations - it is a single axiom that turns out to be
problematic, namely contraction.

The D-translation of contraction is

∃X1, X2, Y ∀x, y1
, y

2

(
ϕ(x, Y xy

1
y

2
)→ ϕ(X1x, y1

) ∧ ϕ(X2x, y2
)
)
,

for ϕ quantifier-free. For the realisers X1 and X2 there is only one obvious choice,
namely X1 ≡ X2 := λx.x.

But Y needs to be a conditional operator, such that

Y xy
1
y

2
= y

1

if it holds that ¬ϕ(x, y
1
), and

Y xy
1
y

2
= y

2

otherwise. This, of course, is possible if and only if ϕ is decidable.



Uniform Diller-Nahm 31

Incidentally - since the recognition of contraction as a “problematic” axiom is at the
root of linear logic, one may guess that Dialectica can be refined to an interpretation of
the latter; and so it is [43], the result being quite more symmetric for linear implication
than for intuitionistic implication.

So, the D-translation of proofs forces a decision every time the contraction axiom
is used. Depending on one’s needs, this may be considered a feature, since it keeps
redundancy to a minimum. However, in other cases, either decidability is not an option,
or we want more control over which formulae are interpreted by themselves; the simplest
solution is then to interpret contraction as

∃X1, X2, Y ∀x, y1
, y

2

(
∀y ∈ Y xy

1
y

2
ϕ(x, y)→ ϕ(X1x, y1

) ∧ ϕ(X2x, y2
)
)
,

and pick Y xy
1
y

2
:= λx, y

1
, y

2
.〈y

1
〉 · 〈y

2
〉, effectively circumventing any decision.

This gives the Diller-Nahm variant of the Dialectica interpretation [12].

Definition 2.4. The Diller-Nahm interpretation associates to every formula ϕ(a) of
L(WE-HAω∗), with free variables a, a formula ϕ(a)∧ = ∃x ∀y ϕ∧(x, y, a). The inductive
clauses are identical to those of the Dialectica interpretation, except for implication:

. (ϕ(a)→ ψ(b))∧ := ∃U, Y ∀x, v
(
∀y ∈ Y xv ϕ∧(x, y, a)→ ψ∧(Ux, v, b)

)
.

As sequences do not play such a big role in the Diller-Nahm interpretation, it is not
really customary to use a system enriched with types for finite sequences, like WE-HAω∗,
as a base; but, having gone to great lengths to set it up, we might as well use it.

Theorem 2.5 (Soundness of the Diller-Nahm interpretation). Suppose

WE-HAω∗ ` ϕ(a) ,

with ϕ(a)∧ = ∃x ∀y ϕ∧(x, y, a). Then from the proof we can extract a tuple of closed
terms t such that

WE-HAω∗ ` ∀y ϕ∧(t, y, a) .

Proof. We have already handled the case of contraction, which is the only difference with
respect to the D-translation.

You may have noticed that, in order to obtain Diller-Nahm implication, one needs,
instead of MP′, a principle like

HGMP : (∀x : σ ϕ(x)→ ψ)→ ∃s : σ∗ (∀x ∈ sϕ(x)→ ψ) ;

an “internalisation” of HGMPst, where ϕ, ψ have the appropriate range. Since, in the
nonstandard context, the latter is a consequence of the “natural” principle US∗, our
path to nonstandard functional interpretations leads us to Diller-Nahm, rather than
Dialectica-style implication.

2.2 Uniform Diller-Nahm

In [32], Lifschitz made the following observation: even in a classical framework, recursion
theory has made precise the notion of a calculable function; however, there is no such
way of speaking about calculable numbers. So philosophically puzzling situations arise,



32 Chapter 2 Functional interpretations

such as a function provably having a Gödel number, hence being recursive, and us not
knowing which number that is.

So, either one reasons in Heyting arithmetic, where all numbers are calculable num-
bers, or one adopts classical logic, where the distinction is completely lost. Lifschitz’s
proposal is to enrich the language of Heyting arithmetic with a predicate K(n), “n is
calculable”; and then extend the definition of Kleene’s recursive realisability with the
clause

. x rK K(n) if and only if x = n,

all the while interpreting quantifiers uniformly :

. x rK ∀nϕ(n) if and only if ∀n (x rK ϕ(n)),

. x rK ∃nϕ(n) if and only if ∃n (x rK ϕ(n)).

So, by themselves, in this definition quantifiers are completely void of any computational
meaning; it is by invoking quantifiers restricted to calculable numbers, ∀n (K(n)→ . . .),
and ∃n (K(n) ∧ . . .), that one restores it.

There is a remarkable similarity between Lifschitz’s minimal axioms for the calcu-
lability predicate - stability under application, and a restricted, “external” induction
schema - and those we imposed on the standardness predicate. But the analogy does
not stop here.

In [52], Robert suggests to regard “standardness” as “accessibility” in order to ob-
tain an intuitive understanding of internal set theory; so, for instance, the existence
of hyperfinite enumerations becomes the statement that whatever is accessible can be
enumerated, corresponding to

“...a practical finiteness feeling for the notion of accessibility.” [52, p. 13]

One could substitute “calculable” for “accessible”, and it would still all make sense.
A couple of decades later, Lifschitz’s demand was rediscovered, from a completely

different perspective, in the area of proof mining. Rather than the foundational issue
of injecting a certain “modular constructiveness” into classical reasoning, it was the
practical problem of more efficient program extraction from proofs that was addressed.

Even in fully intuitionistic proofs, a fine-grained analysis reveals instances of formulae
with quantifiers that are computationally redundant ; i.e. the constructive content that
is encoded in the quantifiers is never used in the program extracted with the aid of
a functional interpretation. This always happens, in particular, when - in a natural
deduction setting - an implication introduction discharges more then one instance of the
same formula, so that the contraction rule needs to be used.

One would want a way to flag such quantifiers, telling the extraction program to just
“pass through” them. This is the function performed by Berger’s uniform quantifiers
[4] and, with an eye to Dialectica extraction, by Hernest’s quantifiers without computa-
tional meaning [17]. But, realisability being a rudimentary functional interpretation -
in particular Kreisel’s modified brand, see [42] - this is also what Lifschitz’s calculability
predicate achieved!

So, once we accept the analogy between calculability and standardness, we have
two ways of looking at the dichotomy between the ordinary quantifiers ∀x, ∃x and the
external quantifiers ∀stx, ∃stx:
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• one that is mediated by nonstandard arithmetic and analysis: ∀x, ∃x are the
ordinary quantifiers, and it is the universe of types that has been (syntactically)
divided into layers;

• one that is inspired by Berger and Hernest: the external quantifiers have compu-
tational meaning, and correspond to the usual intuitionistic quantifiers, while the
ordinary quantifiers should be interpreted uniformly.

These two viewpoints reach a perfect synthesis in the nonstandard Dialectica, or Dst

interpretation; but we will get there gradually. Our categorical analysis from Chapter 3
suggested that we could obtain Dst in two steps: extending Diller-Nahm with uniform
quantifiers; and then “herbrandising”, in order to fix a problem with disjunctions.

The connection of this uniform Diller-Nahm interpretation to nonstandard arith-
metic is quite feeble: it lives in the system E-HAω∗

st∨, which, due to the induction schema
IA∨ being restricted to ∨-free formulae, is not even an extension of Heyting arithmetic;
so conservativity (“transfer”) is restricted. However, forgetting for a moment the usual
semantics of the standardness predicate, and thinking of it as more alike to Lifschitz’s
calculability, one could still find a use for this interpretation in optimised proof mining.

Notice that if one equates “standard” to “calculable”, the failure of

∀n : 0 (n = 0 ∨ ¬n = 0)

starts making sense; for how could we know whether a non-calculable number is zero or
non zero?

Definition 2.6. To every formula Φ(a) of L(E-HAω∗
st∨), with free variables a, we associate

inductively its uniform Diller-Nahm translation Φ(a)U = ∃stx ∀sty ϕU (x, y, a), where ϕU
is internal and ∨-free.

. ϕ(a)U := ϕU (a) := ϕ(a), for ϕ internal atomic;

. stσ(x)U := ∃sty : σ (y = x) .

Let Φ(a)U = ∃stx ∀sty ϕU (x, y, a), Ψ(b)U = ∃stu∀stv ψU (u, v, b):

. (Φ(a) ∧Ψ(b))U := ∃stx, u∀sty, v
(
ϕU (x, y, a) ∧ ψU (u, v, b)

)
;

. (Φ(a)∨Ψ(b))U := ∃stz : 0, x, u∀sty, v
(
z = 0→ ϕU (x, y, a)∧¬ z = 0→ ψU (u, v, b)

)
;

. (Φ(a)→ Ψ(b))U := ∃stU, Y ∀stx, v
(
∀y ∈ Y xv ϕU (x, y, a)→ ψU (Ux, v, b)

)
;

. (∃zΦ(z, a))U := ∃stx ∀sty ∃z ∀y′ ∈ y ϕU (x, y′, z, a) ;

. (∀zΦ(z, a))U := ∃stx ∀sty ∀z ϕU (x, y, z, a) ;

. (∃stzΦ(z, a))U := ∃stz, x∀sty ϕU (x, y, z, a) ;

. (∀stzΦ(z, a))U := ∃stX ∀sty, z ϕU (Xz, y, z, a) .

The first thing to notice is that, if this interpretation is restricted to formulae
that contain only external quantifiers - or, if you prefer, everything is declared stan-
dard/calculable - it is the same as the usual Diller-Nahm translation.
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Secondly, the interpretation is idempotent : formulae of the form

∃stx ∀sty ϕ(x, y, a)

with ϕ internal and ∨-free are interpreted as themselves, as shown by an easy induction
on their structure. This is a feature that we will lose with herbrandisation.

Except for a minor change in the interpretation of the uniform existential quantifier,
this interpretation is to the Diller-Nahm variant what Hernest’s light Dialectica inter-
pretation [17] is to Dialectica. The main difference between the two approaches is that
our external quantifiers correspond to the ordinary quantifiers in Hernest’s setting; the
distinction is obtained there with an extension of intuitionistic natural deduction with
new rules for the noncomputational quantifiers.

Instead, it is by using the standardness predicate in the spirit of Lifschitz’s calcula-
bility that we will see the analogy to nonstandard arithmetic.

2.2.1 The soundness theorem

Time for a soundness theorem - it is a long thing, but it needs to be done once. We
will not need, however, to handle everything explicitly: except for those concerning the
quantifiers, all the logical axioms and rules admit the same realisers as those for the
Diller-Nahm interpretation. We will show, though, that uniform Diller-Nahm interprets
what we will recognise later as its characteristic principles; these include a form of the
following independence of premise principle:

IPst
∀ : (∀stx : σ ϕ(x)→ ∃sty : τ Ψ(y))→ ∃sty : τ (∀stx : σ ϕ(x)→ Ψ(y)) .

Recall that, if P is an axiom schema with variables ranging over internal formulae,
the same variables range over internal and ∨-free formulae in P∨. We write E-HAω∗

∨ for
the system E-HAω∗ with IA∨ in place of IA.

Theorem 2.7 (Soundness of uniform Diller-Nahm). Suppose

E-HAω∗
st∨ + OS∗∨ + US∗∨ + NU + ACst + IPst

∀∨ + ∆∨ ` Φ(a) ,

where ∆∨ is a set of internal, ∨-free sentences. Let Φ(a)U = ∃stx ∀sty ϕU (x, y, a). Then
from the proof we can extract a tuple of closed terms t such that

E-HAω∗
∨ + ∆∨ ` ∀y ϕU (t, y, a) .

Proof. We proceed by induction on the length of the derivation.

1. The logical axioms and rules of intuitionistic first order predicate logic. We consider
the quantifier axioms and rules, and give another couple of examples, referring
again to [59, 3.5.4] for the rest.

(i) Example - weakening : A→ A ∨B.

Suppose AU = ∃stx ∀sty ϕ(x, y, a), BU = ∃stu∀stv ψ(u, v, b). Then

(A→ A ∨B)U = ∃stZ,X ′, U, S ∀stx, y′, v
(
∀y ∈ Sxy′v ϕ(x, y, a)→

(Zx = 0→ ϕ(X ′x, y′, a) ∧ ¬Zx = 0→ ψ(Ux, v, b))
)
,

and we can take
Z := λx.0 , X ′ := λx.x ,

U arbitrary, S := λx, y′, v.〈y′〉 .
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(ii) ∀z A→ A[b/z].

Suppose AU = ∃stx ∀sty ϕ(x, y, z, a). Then

(∀z A→ A[b/z])U = ∃stX ′, S ∀stx, y′(
∀y ∈ Sxy′ ∀z ϕ(x, y, z, a)→ ϕ(X ′x, y′, b, a)

)
,

so we can take

X ′ := λx.x , S := λx, y′.〈y′〉 .

(iii) A[b/z]→ ∃z A.

Suppose AU = ∃stx ∀sty ϕ(x, y, z, a). Then

(A[b/z]→ ∃z A)U = ∃stX ′, S ∀stx, t(
∀y ∈ Sxtϕ(x, y, b, a)→ ∃z ∀y′ ∈ t ϕ(X ′x, y′, z, a)

)
,

and we can take

X ′ := λx.x , S := λx, t.t .

(iv) Example - modus ponens.

Suppose that AU = ∃stx ∀sty ϕ(x, y, a), BU = ∃stu∀stv ψ(u, v, b), and that

we have terms t1 realising the interpretation of AU and T 2, T 3 realising the
interpretation of (A→ B)U .

This means we have

E-HAω∗
∨ + ∆∨ ` ∀y ϕ(t1, y, a) ,

and
E-HAω∗

∨ + ∆∨ ` ∀x, v
(
∀y ∈ T 3xv ϕ(x, y, a)→ ψ(T 2x, v, b)

)
.

Taking t4 := T 2t1, we obtain

E-HAω∗
∨ + ∆∨ ` ∀v ψ(t4, v, b) ,

as desired.

(v)
B → A

B → ∀z A
.

Suppose that AU = ∃stx ∀sty ϕ(x, y, z, a), BU = ∃stu∀stv ψ(u, v, b), where z is

not free in ψ, and that we have terms T 1, T 2 realising (B → A)U . Then,

E-HAω∗
∨ + ∆∨ ` ∀u, y

(
∀v ∈ T 2uy ψ(u, v, b)→ ϕ(T 1u, y, z, a)

)
.

Then T 3 := T 1 and T 4 := T 2 realise the interpretation of B → ∀z A.

(vi)
A→ B

∃z A→ B
.

Suppose that AU = ∃stx ∀sty ϕ(x, y, z, a), BU = ∃stu∀stv ψ(u, v, b), where z is

not free in ψ, and that we have terms T 1, T 2 realising (A→ B)U . Then,

E-HAω∗
∨ + ∆∨ ` ∀x, v

(
∀y ∈ T 2xv ϕ(x, y, z, a)→ ψ(T 1x, v, b)

)
.
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We have

(∃z A→ B)U = ∃stU, S ∀stx, v(
∀s ∈ Sxv ∃z ∀y ∈ sϕ(x, y, z, a)→ ψ(Ux, v, b)

)
;

so we can take T 3 := T 1, and T 4 := λx, v.〈T 2xv〉 , to obtain

E-HAω∗
∨ + ∆∨ ` ∀x, v

(
∀s ∈ T 4xv ∃z ∀y ∈ sϕ(x, y, z, a)→ ψ(T 3x, v, b)

)
.

2. The nonlogical axioms of extensional Heyting arithmetic in all finite types (with
the restricted induction schema IA∨). These are all internal and ∨-free, hence are
realised by the empty tuple.

3. The defining axioms of the external quantifiers. Let Φ(x)U := ∃stu∀stv ϕ(u, v, x)
here.

(i) ∀stxΦ(x)↔ ∀x (st(x)→ Φ(x)) .

The interpretation of ∀stxΦ(x)→ ∀x (st(x)→ Φ(x)) is

∃stU ′, S, T ∀stU, y, v′
(
∀x ∈ SUyv′ ∀v ∈ TUyv′ ϕ(Ux, v, x)→

∀x (x = y → ϕ(U ′Uy, v′, x))
)

;

so we can take

U ′ := λU, y.Uy , S := λU, y, v′.〈y〉 ,
T := λU, y, v′.〈v′〉 .

On the other hand, the interpretation of ∀x (st(x)→ Φ(x))→ ∀stxΦ(x) is

∃stU ′, S, T ∀stx′, U, v′
(
∀y ∈ Sx′Uv′ ∀v ∈ Tx′Uv′ ∀x

(x = y → ϕ(Uy, v, x))→ ϕ(U ′Ux′, v′, x′)
)
,

and we can take

U ′ := λU, x′.Ux′ , S := λx′, U, v′.〈x′〉 ,
T := λx′, U, v′.〈v′〉 .

(ii) ∃stxΦ(x)↔ ∃x (st(x) ∧ Φ(x)) .

The interpretation of ∃stxΦ(x)→ ∃x (st(x) ∧ Φ(x)) is

∃stY,U ′, T ∀stx, u, s
(
∀v ∈ Txus ϕ(u, v, x)→

∃x′ ∀v′ ∈ s (Y xu = x′ ∧ ϕ(U ′xu, v′, x′))
)

;

so we can take
Y := λx, u.x , U ′ := λx, u.u ,

T := λx, u, s.s .

The interpretation of its converse ∃x (st(x) ∧ Φ(x))→ ∃stxΦ(x) is

∃stX,U, S ∀sty, u′, v
(
∀s ∈ Syu′v ∃x′ ∀v′ ∈ s

(y = x′ ∧ ϕ(u′, v′, x′))→ ϕ(Uyu′, v,Xyu′)
)
,
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and we can take

X := λy, u′.y , U := λy, u′.u′ ,

S := λy, u′, v.〈〈v〉〉 .

4. The axioms for the standardness predicate.

(i) st(x) ∧ x = y → st(y) .

The interpretation of this axiom is

∃stY ′ ∀stx′ (x = x′ ∧ x = y → y = Y ′x′) ,

so we can take Y ′ := λx′.x′ .

(ii) st(a) for all closed terms a.

We have (st(a))U = ∃stx (a = x), so we can take x := a.

(iii) st(f) ∧ st(x)→ st(fx).

The interpretation of this axiom is

∃stY ∀stf ′, x′ (f = f ′ ∧ x = x′ → fx = Y f ′x′) ,

so we can take Y := λf ′, x′.f ′x′ .

5. The external induction schema.

As in [64], we consider the equivalent external induction rule

IRst :
Φ(0) ∀stn : 0 (Φ(n)→ Φ(n+ 1))

∀stn : 0 Φ(n)
,

from which the external induction schema is obtained by taking Φ(m) := Ψ(0) ∧
∀stn : 0 (Ψ(n)→ Ψ(n+ 1))→ Ψ(m) .

So, suppose that (Φ(n))U = ∃stx ∀sty ϕ(x, y, n, a), and that we have realisers t1,
and T 2, T 3 for the premises; i.e.

E-HAω∗
∨ + ∆∨ ` ∀y ϕ(t1, y, 0, a) ,

and

E-HAω∗
∨ + ∆∨ ` ∀n, x, y′ (∀y ∈ T 3nxy

′ ϕ(x, y, n, a)→ ϕ(T 2nx, y
′, n+ 1, a)) .

By taking T 4 := λn.Rt1T 2n, we obtain, by induction for ∨-free formulae in E-
HAω∗
∨ , that

E-HAω∗
∨ + ∆∨ ` ∀n, y ϕ(T 4n, y, n, a) ,

which was to be proved.

6. The principles OS∗∨,US
∗
∨,NU,AC

st, IPst
∀∨.

(i) OS∗∨ : ∀stsϕ(s)→ ∃s (∀stx (x ∈ s) ∧ ϕ(s)) , with ϕ internal and ∨-free.

This is interpreted as

∃stS ∀sts′
(
∀s ∈ Ss′ ϕ(s)→ ∃s (s′ ⊆ s ∧ ϕ(s))

)
,

and we can take S := λs′.〈s′〉 .
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(ii) US∗∨ : ∀s (∀stx (x ∈ s)→ ϕ(s))→ ∃stsϕ(s) , with ϕ internal and ∨-free.

The interpretation of this axiom schema is

∃stS ∀sts′
(
∀s (s′ ⊆ s→ ϕ(s))→ ϕ(Ss′)

)
;

so we can take S := λs′.s′ .

For the principles NU,ACst, IPst
∀∨, we can just observe that the premise and the

conclusion have identical interpretations, so it is trivial to find realisers for the
implication. We do the first as an example.

(iii) NU : ∀y ∃stxΦ(x, y)→ ∃stx ∀yΦ(x, y) .

Let Φ(x, y)U := ∃stu∀stv ϕ(u, v, x, y). Both the premise and the conclusion
are interpreted as

∃stx, u∀stv ∀y ϕ(u, v, x, y) ;

so the implication is interpreted as

∃stX ′, U ′, S ∀stx, u, v′
(
∀v ∈ Sxuv′ ∀y ϕ(u, v, x, y)→ ∀y ϕ(U ′xu, v′, X ′xu, y)

)
,

and we can take

X ′ := λx, u.x , U ′ := λx, u.u ,

S := λx, u, v′.〈v′〉 .

This concludes the proof.

As usual, soundness of an interpretation leads to a conservation result.

Corollary 2.8. The system

E-HAω∗
st∨ + OS∗∨ + US∗∨ + NU + ACst + IPst

∀∨

is conservative with respect to ∨-free formulae of E-HAω∗
∨ .

Proof. Follows immediately from the previous theorem.

It may seem odd, at first, that in order to extend the Diller-Nahm interpretation
with uniform quantifiers, we would end up adopting a system like E-HAω∗

∨ , which, due
to the lack of the full induction schema, is not even a proper system of arithmetic.
The point is that, unlike the situation in Chapter 1, where we started with ordinary
Heyting arithmetic, and then introduced new deductive procedures by means of the
standardness predicate, here it is the fragment where all quantifiers are external that
corresponds to the usual intuitionistic arithmetic; and the ordinary quantifiers, with
their uniform interpretation, are “new”.

In fact, it is through the translation of N-HAω∗ into E-HAω∗
st∨ where ∀x : σ 7→ ∀stx : σ

that one retrieves the usual Diller-Nahm interpretation. Notice that, while there are no
problems with the U -interpretation of the extensionality axioms with uniform quantifiers,
still we could not interpret an axiom like

f =σ→τ g ↔ ∀stx : σ fx =τ gx .

An external extensionality rule, though, should be acceptable.
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2.3 Characterisation and properties

We are now in the position to prove that the principles examined above are characteristic
of uniform Diller-Nahm. So, let

H := E-HAω∗
st∨ + OS∗∨ + US∗∨ + NU + ACst + IPst

∀∨ .

Theorem 2.9 (Characterisation of uniform Diller-Nahm). Let Φ be a formula in the
language of E-HAω∗

st∨.

(a) H ` Φ↔ ΦU .

(b) If for all formulae Ψ of L(E-HAω∗
st∨), with ΨU = ∃stx ∀sty ψ(x, y),

H + Φ ` Ψ

implies that there exist closed terms t such that

E-HAω∗
∨ ` ∀y ψ(t, y)

holds, then H ` Φ .

Proof. We prove (a) by induction on the logical structure of Φ. For Φ ≡ ϕ internal
atomic, obviously H ` ϕ↔ ϕU .

Let Φ ≡ st(x). If x is standard, it follows that ∃sty (x = y), by taking y := x.
Conversely, if ∃sty (x = y), by the first axiom for the standardness predicate it follows
that x is standard. Hence,

H ` st(x)↔ ∃sty (x = y) .

For the induction hypothesis, using an appropriate embedding of tuples of types into
higher types, and a compatible coding of tuples of terms [59, 1.6.17], we can assume,
given formulae Φ and Ψ, that there exist internal, ∨-free formulae ϕ, ψ such that

H ` Φ(x)↔ ∃stx ∀sty ϕ(x, y) ,

H ` Ψ(x)↔ ∃stu∀stv ψ(u, v) .

(i) For ∧, by intuitionistic logic,

∃stx ∀sty ϕ(x, y) ∧ ∃stu ∀stv ψ(u, v)

is equivalent to
∃stx, u∀sty, v (ϕ(x, y) ∧ ψ(u, v)) .

(ii) For ∨,
∃stx ∀sty ϕ(x, y) ∨ ∃stu ∀stv ψ(u, v)

is equivalent in H to

∃stz : 0 (z = 0→ ∃stx ∀sty ϕ(x, y) ∧ ¬ z = 0→ ∃stu∀stv ψ(u, v)) .

By IPst
∀∨, this is equivalent to

∃stz : 0
(
∃stx ∀sty (z = 0→ ϕ(x, y)) ∧ ∃stu∀stv (¬ z = 0→ ψ(u, v))

)
,

and we are back to the case of conjunction.
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(iii) For →, we proceed as with Diller-Nahm implication. By intuitionistic logic and
the principle IPst

∀∨,
∃stx ∀sty ϕ(x, y)→ ∃stu∀stv ψ(u, v)

is equivalent to
∀stx ∃stu ∀stv (∀sty ϕ(x, y)→ ψ(u, v)) .

Now, adapting Proposition 1.41, we see that E-HAω∗
st∨ + US∗∨ ` HGMPst

∨ , so this is
equivalent to

∀stx ∃stu∀stv ∃sts (∀y ∈ sϕ(x, y)→ ψ(u, v)) .

Two applications of ACst then lead to

∃stU, S ∀stx, v (∀y ∈ Sxv ϕ(x, y)→ ψ(Ux, v)) .

(iv) For ∃z, adapting Proposition 1.32, we see that E-HAω∗
st∨ + OS∗∨ ` I∨; therefore

∃z ∃stx ∀sty ϕ(x, y, z)

is equivalent to
∃stx ∀sts∃z ∀y ∈ sϕ(x, y, z) .

(v) For ∀z, we use that by NU

∀z ∃stx ∀sty ϕ(x, y, z)

is equivalent to
∃stx ∀sty ∀z ϕ(x, y, z) .

(vi) For ∃stz, nothing really needs to be done.

(vii) For ∀stz, we just use ACst once in order to obtain that

∀stz ∃stx ∀sty ϕ(x, y, z)

is equivalent to
∃stX ∀sty, z ϕ(Xz, y, z) .

This proves item (a). For (b), suppose Φ satisfies the condition, and that ΦU =
∃stx∀sty ϕ(x, y). Then, from

H + Φ ` Φ

it follows that there exist closed terms t such that

E-HAω∗
∨ ` ∀y ϕ(t, y) .

From this, we obtain E-HAω∗
st∨ ` ∀sty ϕ(t, y) , whence

E-HAω∗
st∨ ` ∃stx ∀sty ϕ(x, y) ;

so H ` ∃stx ∀sty ϕ(x, y) as well. But then, by the equivalence of (a),

H ` Φ

which was to be proved.
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We now show how the uniform Diller-Nahm interpretation may be used to extract
programs from proofs, and eliminate instances of its characteristic principles.

Theorem 2.10 (Program extraction by the U -interpretation). Let ∀stx ∃sty ϕ(x, y) be a
sentence of E-HAω∗

st∨, with ϕ internal and ∨-free, and let ∆∨ be a set of internal, ∨-free
sentences. If

E-HAω∗
st∨ + OS∗∨ + US∗∨ + NU + ACst + IPst

∀∨ + ∆∨ ` ∀stx ∃sty ϕ(x, y) ,

then from the proof we can extract a closed term T such that

E-HAω∗
∨ + ∆∨ ` ∀xϕ(x, Tx) .

Proof. The U -translation of ∀stx ∃sty ϕ(x, y) is

∃stf ∀stxϕ(x, fx) ,

so the thesis immediately follows from the soundness theorem.

Finally, we derive a few properties of the system E-HAω∗
st∨, which follow from the

properties of the uniform Diller-Nahm interpretation.

Proposition 2.11. The system H := E-HAω∗
st∨+OS∗∨+US∗∨+NU+ACst + IPst

∀∨ is closed
under the restricted transfer rules

TR∀∨ :
∀stx : σ ϕ(x)

∀x : σ ϕ(x)
,

TR∃∨ :
∃x : σ ϕ(x)

∃stx : σ ϕ(x)
,

where ϕ ranges over internal ∨-free formulae.

Proof. This is an adaptation of [64, Proposition 5.12]. Suppose

H ` ∀stxϕ(x) .

By the soundness theorem, it follows that

E-HAω∗
∨ ` ∀xϕ(x) ,

which, since H is an extension of E-HAω∗
∨ , implies H ` ∀stxϕ(x) .

Now, suppose

H ` ∃xϕ(x) ;

by conservativity, this implies E-HAω∗
∨ ` ∃xϕ(x). Being a subsystem of E-HAω∗, E-HAω∗

∨
inherits the existence property; so we can find a closed term t such that

E-HAω∗
∨ ` ϕ(t) .

Since t is provably standard in H, this implies H ` ∃stxϕ(x) .



42 Chapter 2 Functional interpretations

Proposition 2.12. The system H := E-HAω∗
st∨+OS∗∨+US∗∨+NU+ACst + IPst

∀∨ has the
following form of the existence property: if

H ` ∃stxΦ(x) ,

then there exists a closed term t such that H ` Φ(t).

Proof. Let Φ(x)U = ∃stu∀stv ϕ(x, u, v). By the characterisation theorem, H proves that
Φ is equivalent to its U -translation; so, if H ` ∃stxΦ(x),

H ` ∃stx, u∀stv ϕ(x, u, v) .

By soundness of uniform Diller-Nahm, we can extract closed terms t, T such that

E-HAω∗
∨ ` ∀v ϕ(t, T , v) ;

which, by conservativity, and weakening the quantifier, implies

H ` ∀stv ϕ(t, T , v) .

Since the terms in T are provably standard in H, we obtain

H ` ∃stu∀stv ϕ(t, u, v) ,

which, again by the characterisation theorem, implies H ` Φ(t).

Corollary 2.13. The system H := E-HAω∗
st∨ + OS∗∨ + US∗∨ + NU + ACst + IPst

∀∨ has the
disjunction property.

Proof. Follows from the validity of Φ ∨ Ψ ↔ ∃stz : 0 (z = 0 → Φ ∧ ¬ z = 0 → Ψ) in H,
and the previous proposition.

This is the crux of an approach to nonstandard arithmetic starting from the Diller-
Nahm interpretation. We have seen that the OS0 principle - the least that we would want
from a proper system of nonstandard arithmetic - implies LLPOst

0 ; yet, by Corollary 1.50,
this means giving up the disjunction property, and, a fortiori, the existence property.

So, in a way, the aforementioned system H, with its restricted induction schema and
overspill and underspill principles, is as close as one can get to actual nonstandard arith-
metic, while retaining the full computational strength of the intuitionistic quantifiers.
To proceed farther, one needs to relax this requirement; the next best thing is asking for
a sequence of potential realisers, of which at least one has to work, for each existential
statement, instead of a single, actual realiser - what we called herbrandisation.

2.4 The nonstandard Dialectica interpretation

The introduction of the nonstandard Dialectica interpretation in [64] had nonstandard
analysis as its main motivation: the benchmark to meet was eliminating overspill and
underspill from proofs, retrieving what computational content they may have.

Almost all the results from this section can be found there. But we tried, in this
chapter, to describe a different route towards the same result: one where we start with
the Dialectica interpretation, and progressively apply small “patches”, fixing whichever
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shortcomings might arise. We did keep the nonstandard nomenclature, for there was no
point in pretending we had different goals; but it seems quite noteworthy, to us, that
one could come, in principle, to this interpretation without ever thinking of nonstandard
arithmetic.

So Dialectica requires decidability: we may be unhappy with that, and turn to Diller-
Nahm. Yet we could speed up our proof mining, if only we had two kinds of quantifiers;
which leads us to uniform Diller-Nahm. Then, we notice that the system we obtain -
E-HAω∗

st∨ and characteristic principles - is just one connective away from being a system
of intuitionistic arithmetic. Also, fixing that may require that we weaken the existence
property.

We could come up with the following requirements.

1. Realisers will have to be sequences, so the translated formulae will be of the form
∃sts∀sty ϕ(s, y), where all the variables in s are of sequence type.

2. Also, the more, the better: if one x ∈ s is an actual realiser, then any s′ ⊇ s is also
good. So ϕ will also have to be upwards closed in the first argument; and we will
need the monotonic sequence application as our habitual application.

3. Accordingly, the characteristic principles will also receive the Herbrand treatment:
goodbye, NU,ACst, IPst

∀∨; welcome, NCR,HACst, and

HIPst
∀ : (∀stx : σ ϕ(x)→ ∃sty : τ Ψ(y))→ ∃stt : τ∗ (∀stx : σ ϕ(x)→ ∃y ∈ tΨ(y)) .

4. Finally, we want to replace “internal and ∨-free” with just “internal”, where
needed, and be able to interpret IA, OS∗ and US∗.

In our alternate history, this leads us straight to the following definition.

Definition 2.14. To every formula Φ(a) of L(E-HAω∗
st ), with free variables a, we asso-

ciate inductively its nonstandard Dialectica translation Φ(a)Dst = ∃sts∀sty ϕDst(s, y, a),
where ϕDst is internal.

. ϕ(a)Dst := ϕDst(a) := ϕ(a), for ϕ internal atomic;

. stσ(x)Dst := ∃sts : σ∗ (x ∈ s) .

Let Φ(a)Dst = ∃sts∀sty ϕDst(s, y, a), Ψ(b)Dst = ∃stt∀stv ψDst(t, v, b):

. (Φ(a) ∧Ψ(b))Dst := ∃sts, t∀sty, v
(
ϕDst(s, y, a) ∧ ψDst(t, v, b)

)
;

. (Φ(a) ∨Ψ(b))Dst := ∃sts, t∀sty, v
(
ϕDst(s, y, a) ∨ ψDst(t, v, b)

)
;

. (Φ(a)→ Ψ(b))Dst := ∃stT , Y ∀sts, v
(
∀y ∈ Y [s, v]ϕDst(s, y, a)→ ψDst(T [s], v, b)

)
;

. (∃zΦ(z, a))Dst := ∃sts∀stt ∃z ∀y ∈ t ϕDst(x, y, z, a) ;

. (∀zΦ(z, a))Dst := ∃sts∀sty ∀z ϕDst(s, y, z, a) ;

. (∃stzΦ(z, a))Dst := ∃stu, s∀stt∃stz ∈ u∀y ∈ t ϕDst(s, y, z, a) ;

. (∀stzΦ(z, a))Dst := ∃stS ∀sty, z ϕDst(S[z], y, z, a) .
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The Dst translation is very similar to uniform Diller-Nahm in most of its clauses, the
biggest differences - unsurprisingly, since we are discharging some of their computational
content - being disjunction and the ∃stz quantifier. The latter, in particular, leads to
the interpretation not being idempotent: (∃stzΦ(z))Dst is not, in general, the same as
((∃stzΦ(z))Dst)Dst .

However, it is true that formulae of the form ∀stxϕ(x), with ϕ internal, are left
unchanged by the interpretation.

It can be easily shown that our second requirement is satisfied.

Proposition 2.15. Let Φ(a) be a formula of L(E-HAω∗
st ), Φ(a)Dst = ∃sts∀sty ϕ(s, y, a).

Then E-HAω∗ proves that ϕ is upwards closed in s:

E-HAω∗ ` ϕ(s, y, a) ∧ s ⊆ s′ → ϕ(s′, y, a) .

Proof. By induction on the logical structure of Φ(a), using Lemma 1.15 in the clauses
for → and ∀stz.

We now state the soundness theorem for the Dst interpretation, without a complete
proof, which would be unnecessary.

Theorem 2.16 (Soundness of the nonstandard Dialectica interpretation). Suppose

E-HAω∗
st + OS∗ + US∗ + NCR + HACst + HIPst

∀ + ∆int ` Φ(a) ,

where ∆int is a set of internal sentences. Let Φ(a)Dst = ∃sts∀sty ϕDst(s, y, a). Then
from the proof we can extract a tuple of closed terms t such that

E-HAω∗ + ∆int ` ∀y ϕDst(t, y, a) .

Proof. As usual, the proof proceeds by induction on the length of the derivation. We
only analyse one of the defining axioms of the external quantifiers, as an illustrative
example of the specificities of Dst, and the principles OS∗ and US∗, which were not
taken into consideration in the original article; and refer to [64, Theorem 5.5] for the
rest.

Consider ∃stxΦ(x) ↔ ∃x (st(x) ∧ Φ(x)) , and let Φ(x)Dst = ∃sts∀sty ϕ(s, y, x). We
have

(∃stxΦ(x))Dst = ∃stu, s∀stt∃x ∈ u∀y ∈ t ϕ(s, y, x) ,

and (
∃x (st(x) ∧ Φ(x))

)Dst = ∃stu, s∀stt ∃x ∀y ∈ t (x ∈ u ∧ ϕ(s, y, x)) .

Then the interpretation of ∃stxΦ(x)→ ∃x (st(x) ∧ Φ(x)) is

∃stU ′, S′, T ∀sts, u, t′
(
∀t ∈ T [s, u, t′]∃x ∈ u∀y ∈ t ϕ(s, y, x)→
∃x ∀y ∈ t′ (x ∈ U ′[s, u] ∧ ϕ(S′[s, u], y, x)

)
,

and we can take

U ′ := Λs, u.u , S′ := Λs, u.s ,

T := Λs, u, t′.〈t′〉 .
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The converse ∃x (st(x) ∧ Φ(x))→ ∃stxΦ(x) , on the other hand, is interpreted as

∃stU ′, S′, T ∀sts, u, t′
(
∀t ∈ T [s, u, t′] ∃x ∀y ∈ t′

(x ∈ U ′[s, u] ∧ ϕ(S′[s, u], y, x)→ ∃x ∈ u∀y ∈ t ϕ(s, y, x)
)
,

and the same realisers will work as with the first implication.
Now, consider OS∗ : ∀stsϕ(s) → ∃s (∀stx (x ∈ s) ∧ ϕ(s)) , with ϕ internal. Its

interpretation is

∃stS ∀sts′
(
∀s ∈ S[s′]ϕ(s)→ ∃s (s′ ⊆ s ∧ ϕ(s))

)
,

and we can take S := Λs′.〈s′〉.
Finally, US∗ : ∀s (∀stx (x ∈ s)→ ϕ(s))→ ∃stsϕ(s) is interpreted as

∃stT ∀sts′′
(
∀s∃s′ ∈ s′′ (s′ ⊆ s→ ϕ(s))→ ∃t ∈ T [s′′]ϕ(t)

)
;

since ∀s∃s′ ∈ s′′ (s′ ⊆ s→ ϕ(s)) implies ϕ(s′′0 · . . . · s′′|s′′|−1), we can take

T := Λs′′.(s′′0 · . . . · s′′|s′′|−1) .

Corollary 2.17. The system

H := E-HAω∗
st + OS∗ + US∗ + NCR + HACst + HIPst

∀

is a conservative extension of E-HAω∗, hence of E-HAω.

So the magic happened: we have attained a system which, including sequence over-
spill and underspill, we are not ashamed to call nonstandard arithmetic; and, by the last
conservation result, we have a full “transfer theorem”.

Then, we have the analogue of Theorem 2.9, with the herbrandised principles.

Theorem 2.18 (Characterisation of nonstandard Dialectica). Let Φ be a formula in the
language of E-HAω∗

st .

(a) H ` Φ↔ ΦDst .

(b) If for all formulae Ψ of L(E-HAω∗
st ), with ΨDst = ∃sts∀sty ψ(s, y),

H + Φ ` Ψ

implies that there exist closed terms t such that

E-HAω∗ ` ∀y ψ(t, y)

holds, then H ` Φ .

Proof. For item (a), again one should proceed by induction on the logical structure of Φ.
We only examine the cases that are distinct enough from uniform Diller-Nahm, namely
the standardness predicate, ∨ and ∃stz, and refer to [64, Theorem 5.8] for the rest.

For st(x), if x is standard, ∃sts (x ∈ s) follows with s := 〈x〉. If ∃sts (x ∈ s), then
st(x) follows by Lemma 1.21.(c).

Now, given Φ and Ψ, suppose that there are internal ϕ, ψ such that

H ` Φ(x)↔ ∃sts∀sty ϕ(s, y) ,

H ` Ψ(x)↔ ∃stt ∀stv ψ(t, v) .
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(i) For ∨, observe that
∃sts∀sty ϕ(s, y) ∨ ∃stt∀stv ψ(t, v)

is intuitionistically equivalent to

∃sts, t (∀sty ϕ(s, y) ∨ ∀stv ψ(t, v)) .

By 1.36, LLPOst holds in H, so this in turn is equivalent to

∃sts, t∀sty, v (ϕ(s, y) ∨ ψ(t, v)) .

(ii) For ∃stz, we use that
∃stz, s∀sty ϕ(s, y, z)

is equivalent, by Lemma 1.21, to

∃stu, s∃z ∈ u ∀sty ϕ(s, y, z) .

By idealisation - a principle equivalent to sequence overspill - this is the same as

∃stu, s∀stt ∃z ∈ u∀y ∈ t ϕ(s, y, z) .

The proof of item (b) is identical to that of Theorem 2.9.

With the characterisation theorem, we can prove that H is closed under both transfer
rules.

Proposition 2.19. The system E-HAω∗
st + OS∗ + US∗ + NCR + HACst + HIPst

∀ is closed
under the rules TR∀ and TR∃.

Proof. See [64, Proposition 5.12].

By Corollary 1.50, we already know that H does not have the disjunction property,
nor the existence property. Still, we are able to extract programs from proofs, albeit in
a herbrandised fashion.

Theorem 2.20 (Program extraction by the Dst-interpretation). Let ∀stx ∃sty ϕ(x, y) be
a sentence of E-HAω∗

st , with ϕ internal, and let ∆int be a set of internal sentences. If

E-HAω∗
st + OS∗ + US∗ + NCR + HACst + HIPst

∀ + ∆int ` ∀stx ∃sty ϕ(x, y) ,

then from the proof we can extract a closed term T such that

E-HAω∗ + ∆int ` ∀x ∃y ∈ Txϕ(x, y) .

Proof. The Dst-translation of ∀stx ∃sty ϕ(x, y) is

∃stf ∀stx ∃y ∈ f [x]ϕ(x, y) .

By the soundness theorem, we can extract from the proof a closed term S such that

E-HAω∗ + ∆int ` ∀x ∃y ∈ S[x]ϕ(x, y) ;

so it suffices to pick T := λx.S[x].
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Classical models of nonstandard analysis were meant to provide a calculus of in-
finitesimals, so as to lower the logical complexity of theorems of classical analysis, and
make their proofs more smooth and readable. Perhaps the most fascinating feature of
this system of constructive nonstandard arithmetic is that not only it does that - with
overspill inducing a version of LLPO, and underspill one of Markov’s principle, it also
allows for a share of classical modes of reasoning, which were previously unavailable,
with the guarantee that they can be eliminated at the end.

Example 2.21. Many theorems of classical analysis hold constructively only in an
approximate form; so while the former may state that a certain function f has a zero in
a certain interval, the latter will state that f gets arbitrarily close to zero in that same
interval. Plenty of examples can be found in [8].

So suppose we were able to formalise such a proof in Heyting arithmetic in all finite
types; that is, making an informal use of syntax,

E-HAω∗ + ∆int ` ∀n ∃x |f(x)| < 1

n
,

where ∆int are the hypotheses of the theorem. Then

E-HAω∗
st + ∆int ` ∀sts∃x ∀n ∈ s |f(x)| < 1

n
,

and, utilising the fact that OS∗ is equivalent to idealisation,

E-HAω∗
st + OS∗ + ∆int ` ∃x ∀stn |f(x)| < 1

n
,

which, with the notation of Example 1.37, we can write

E-HAω∗
st + OS∗ + ∆int ` ∃x |f(x)| ' 0 .

Therefore, at the price of substituting ' for =, we can retrieve the theorem in a pseudo-
classical form, the function having an “ideal” zero; in our proofs, we can

“work directly with the ideal objects, and [. . .] on this basis develop a calculus
with constructive content which is intermediate between constructive and classical
analysis”. [46, p.235]

To what extent can these principles simplify proofs of constructive analysis? In a
series of articles [45, 46, 47, 50], Palmgren provided constructive nonstandard proofs,
very close to classical ones, for several fundamental theorems of analysis, up to the
Implicit Function theorem, by working in the “filter topos” N - which will be the focus
of Chapter 3. As we will see, under few metatheoretical assumptions, first order logic in
N corresponds to Dst logic, which is encouraging.

As far as we know, Palmgren did not know of all our characteristic principles that
they hold in N ; whether they provide further simplification, we would like to know, but
did not have time to investigate.

With this, we can wrap up the proof-theoretic part of this thesis. The original
models of nonstandard analysis exploited the dangerous nonconstructive nonprincipal
ultrafilters; in the next chapter, we will venture into topos theory, and try to figure
out what our functional interpretations have to do with humble, constructive, ordinary
filters of sets.





Chapter 3

Categorical models

In this chapter:

. We provide a concise introduction to categorical logic, up to the interpretation
of first order logic in a Heyting category, and to the inductive definition of sheaf
semantics in a Grothendieck topos. - Section 3.1

. We describe the filter construction, building from a category C a new category
FC, all the while preserving enough of the original structure; we then define two
categories of sheaves over FSet, the filter topoi U andN , and give a topos-theoretic
characterisation of their relation. - Section 3.2

. We state and prove a theorem by Moerdijk, linking the internal first order logic of
N to “external” semantics, together with an adaptation for U ; these imply a full
transfer theorem for N , and a restricted one for U . - Section 3.3

. We prove that, under few metatheoretical assumptions, the characteristic principles
of nonstandard Dialectica hold in N , and those of uniform Diller-Nahm hold in U .
- Section 3.4

. Finally, we survey an entirely different class of elementary, non-Grothendieck topoi
that have been considered as models of functional interpretations, including Diller-
Nahm and nonstandard Dialectica, and leave a few questions open about their
relation to the filter topoi. - Section 3.5

3.1 Logic inside a category

In [36], Moerdijk presented a constructive model of nonstandard arithmetic with a full
transfer theorem. Although, in principle, the first order part of the model could be
described through an explicit forcing relation, he worked in the general context of
Grothendieck topoi and Kripke-Joyal semantics. We will follow the same approach,
which allows us to use known results from topos theory in order to prove properties of
this model.

We will take the basic notions of category theory - simple limits and colimits, adjoint
functors, etc. - for granted; the “Categorical Preliminaries ” section of [34] should be
sufficient for our needs, and we will use the same book as the standard reference for
logical aspects of topoi. We will require all categories to be small : they will have a

49
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“set” of objects, and, for all pairs of objects X, Y , a “set” of morphisms from X to Y -
whatever the metatheoretical notion of set is.

Topos theory is an extremely multifaceted subject, as suggested by a list of thirteen
possible descriptions of what a topos is, that opens Johnstone’s [24], the ongoing summa
of the field. The one that is perhaps most relevant to a logician is number (iii),

“A topos is (the embodiment of) an intuitionistic higher-order theory”.

One can formalise basically all of mathematics in intuitionistic higher order logic, which
justifies the mantra that topoi are “universes in which to do mathematics”.

Surprisingly, all the structure needed to support a rich enough logic follows from a
short list of requirements, appearing in Lawvere’s definition of an elementary topos.

Definition 3.1. An elementary topos is a category E which

1. is finitely complete,

2. is cartesian closed, and

3. has a subobject classifier.

Notation. We write HomC(X,Y ) for the (external) set of morphisms from the
object X to the object Y of a category C.

For cartesian closed categories, we write Y X , or X → Y when there is no confusion,
for the internal Hom, the object of morphisms from X to Y .

From these, one can progressively derive that an elementary topos supports more and
more expressive logical theories. Recall that the subobject poset Sub(X) of an object X
in a category C is the poset reflection of the set of all monomorphisms A � X in C
with codomain X, preordered with the relation

A ≤ B if and only if there exists a monomorphism A� B in C.

Definition 3.2. A finitely complete category C is regular if it has co-equalisers of kernel
pairs, and they are stable under pullback.

A regular category C is coherent if, for all objects X of C, the poset Sub(X) of
subobjects of X has all finite unions, and, for all morphisms f : Y → X, these are stable
under the change of base functor f∗ : Sub(X)→ Sub(Y ).

A coherent category H is a Heyting category if, for all morphisms f : Y → X, the
change of base functor f∗ : Sub(X) → Sub(Y ) has a right adjoint ∀f : Sub(Y ) →
Sub(X).

An elementary topos is a Heyting category (a fortiori, it is regular and coherent),
which is sufficient for the interpretation of first order logic. In fact, one has the following,
fundamental result.

Theorem 3.3. For all objects X of a Heyting category H, the poset Sub(X) of subobjects
of X has the structure of a Heyting algebra, and, for all morphisms f : Y → X, the
change of base functor f∗ : Sub(X)→ Sub(Y ) is a homomorphism of Heyting algebras.
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Proof. We show how to construct the Heyting algebra structure, and refer to [34, The-
orem 8.1] for a full proof.

The operation ∧ corresponds to taking the pullback of a subobject A along another
subobject B:

A ∧B B

A X .

The operation ∨ corresponds to taking the image of the coproduct A+B in X, which
is always possible in regular categories, since they admit a notion of image factorisation:

A A+B B

A ∨B

X .

The constants >, ⊥ correspond, respectively, to the maximal and minimal subobjects
X = X, 0 � X.

Finally, Heyting implication → is defined by

A→ B := ∀m (A ∧B) ,

where m : A � X is a monomorphism of A into X, and ∀m is the right adjoint to m∗

given by the definition of Heyting category. We can easily check that this works: for
subobjects A,B,C, with m : A� X,

C ≤ A→ B

if and only if, by ∀m being a right adjoint,

m∗C ≤ A ∧B ;

but m∗C = A ∧ C, and clearly A ∧ C ≤ A ∧B if and only if A ∧ C ≤ B.

The left and right adjoints to the change of base functors, which exist, respectively, in
all regular categories and in all Heyting categories, enable us to also interpret existential
and universal quantifiers in a Heyting category, in a way that we will later make more
precise.

What an elementary topos E has, that a Heyting category does not, is the subobject
classifier : a monomorphism true : 1 � Ω, where 1 is the terminal object of E , such that
for all subobjects m : A� X in E , there exists a unique morphism charA : X → Ω, the
characteristic morphism of A, such that

A 1

X Ω

m true

charA
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is a pullback diagram.

With a subobject classifier, one can construct power objects, by defining for all objects
X of E

PX := ΩX .

Then, by the definition of exponentials in a cartesian closed category, global elements
of PX, i.e. morphisms 1 → PX, are in one-to-one correspondance with morphisms
1 × X ' X → Ω; hence, by definition of the subobject classifier, with subobjects of
X. So power objects generalise powersets to arbitrary topoi, and allow one to interpret
higher order logic within the latter.

For a model of the functional interpretations of Chapter 2, we actually only need first
order logic; but there are other reasons why we may want to give up the full “elementary
topos” structure for our models.

In the last century, Zermelo-Fraenkel set theory, with or without the axiom of choice,
has been the predominant “universe of mathematics”, so reasonably Set, a category of
sets and functions, is usually taken to be the archetypal topos. Yet there is a considerable
plurality of views on how to treat this category, in which two main approaches can be
distinguished.

• One may want Set to mimick as closely as possible the universe of ZFC, even when
working in a constructive metatheory; so Set should be required to be Boolean,
satisfy the axiom of choice, etc. For instance, one may expect Set to be a model of
Lawvere’s Elementary Theory of the Category of Sets (ETCS) [31], a categorical
axiomatisation of classical set theory.

• One, instead, may want Set to be a “small” copy of their preferred metatheory -
usually, one where a universe has been fixed; as some form of sets and functions is
a basic part of all but the most exotic foundations of mathematics, it makes sense
to require that a category of sets and functions should behave in agreement with
our informal understanding.

We will follow the latter, “pluralist” approach. Predicative foundations of mathematics,
however, reject the powerset axiom of set theory - in categorical terms, the existence of a
(strict) subobject classifier; so, if the second approach is taken, it may happen that Set
fails to be an elementary topos (although it will, of course, still be a Heyting category).
Notions of predicative topos, closed under the most important constructions of topoi from
topoi, have been proposed, e.g. in [61], but these are not of particular relevance here.

What is relevant, though, is that none of the definitions we give, and of the properties
we prove concerning the “filter topoi”, need nonconstructive, or controversial assump-
tions about the metatheory - except for one case, where it seems preferable to have the
axiom of choice at hand.

Now, much of the theory of Moerdijk’s topos for nonstandard arithmetic has been
developed by Palmgren in the constructive, predicative framework of Martin-Löf depen-
dent type theory (for which [41] is a good reference); and a type-theoretic version of the
axiom of choice is a theorem of the latter. Thus, although we do not want to impose a
single metatheory, it is true that this may be a good choice; but it does entail that Set
is no longer an elementary topos.

Whatever your preference about Set is, the notion of Grothendieck topos can be
formulated relative to it, and this is all we need for now.
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Definition 3.4. Let C be a category. A presheaf over C is an object of [Cop,Set], the
category of contravariant functors from C to Set, and natural transformations.

Notation. As is customary, if a presheaf F over C is clear from the context,
for all objects X of C, x ∈ FX, and g : Y → X, we write x · g for the element
Fg(x) ∈ FY .

For all objects X of C, we write yX for the representable presheaf HomC(−, X),
which acts as precomposition on morphisms. This defines an embedding - the Yoneda
embedding - of C into [Cop,Set]. That this is actually an embedding, i.e. a functor
that is full, faithful and injective on objects, is guaranteed by the fundamental Yoneda
lemma, stating that for all presheaves F and objects X there is a natural isomorphism

FX ' Hom[Cop,Set](yX,F ) .

Categories of presheaves are the simplest example of Grothendieck topoi; all the other
Grothendieck topoi are obtained by singling out certain presheaves as sheaves, requiring
that they behave properly with respect to a certain notion of covering of an object of C.
By analogy with sheaves on a topological space, this notion has been called a topology
on C. Here we will work with bases for topologies, in a version inspired by [44].

Definition 3.5. Let C be a category with pullbacks. A (basis for a) Grothendieck
topology on C is a relation K between objects X of C, and sets of morphisms {fi : Xi →
X}i∈I with codomain X, indexed by a set I, to be read

“{fi : Xi → X}i∈I K-covers X”,

such that:

1. if f : X ′ → X is an isomorphism, then the singleton {f : X ′ → X} K-covers X;

2. if {fi : Xi → X}i∈I K-covers X, and g : Y → X is any morphism to X, then the
set of the {π1

i : Y ×X Xi → Y }i∈I , as in

Y ×X Xi Xi

Y X ,

π2
i

π1
i fi

g

K-covers Y ;

3. if {fi : Xi → X}i∈I K-covers X, and, for all i ∈ I, {gij : Xij → Xi}j∈Ji K-covers
Xi, then the set of composites {figij : Xij → X}i∈I, j∈Ji K-covers X.

A pair (C,K) of a category and a Grothendieck topology on it is called a site.

The proper notion of “Grothendieck topology” is usually formulated in terms of
covering sieves. A sieve S on an object X in C is a family of maps with codomain X
that is closed under precomposition: if f : Y → X is in S, then, for all g : Z → Y ,
fg is in S. Equivalently, S is a subpresheaf of yX. Every covering family generates
a covering sieve, by closing under this condition, so every basis K for a Grothendieck
topology generates a Grothendieck topology J .
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Definition 3.6. Let {fi : Xi → X}i∈I be a K-cover of X, and F a presheaf over C.
A set {xi | xi ∈ FXi}i∈I is a matching family of elements of F for the cover if, for all
i, j ∈ I, given pullback projections π1

ij , π
2
ij as in

Xi ×X Xj Xj

Xi X ,

π2
ij

π1
ij fj

fi

it holds that xi · π1
ij = xj · π2

ij ; informally, the elements “coincide on intersections”.

If {xi | xi ∈ FXi}i∈I is a matching family of elements of F , and x ∈ FX, we say
that x is an amalgamation for the matching family if, for all i ∈ I, xi = x · fi.

A presheaf F over C is a K-sheaf if, for all objects X of C, and all K-covers
{fi : Xi → X}i∈I of X, every matching family {xi | xi ∈ FXi}i∈I of elements of F has
a unique amalgamation in X.

We write Sh(C,K) for the subcategory of theK-sheaves in [Cop,Set]; such a category
is called a Grothendieck topos. Notice that, with respect to the minimal Grothendieck
topology where only single isomorphisms are covering, all presheaves are sheaves; so this
definition does include all presheaf categories.

It is a fundamental result of sheaf theory that the inclusion of Grothendieck topoi
i : Sh(C,K) → [Cop,Set] has a left adjoint a : [Cop,Set] → Sh(C,K), the so called
sheafification functor.

Every Grothendieck topos is a Heyting category, and also an elementary topos, pro-
vided that Set is. We refer again to [34] for the construction of limits, colimits, expo-
nentials, and the subobject classifier.

3.1.1 The interpretation of first order logic

We can now show how to interpret first order logic in a Heyting category; we will use
capital Latin letters for types, in order to differentiate the current, more general context
from the proof-theoretic perspective of Chapters 1 and 2. What follows is based on [65,
Chapter 4].

Let L be a many sorted first order language with equality, with types S, T, . . .; de-
numerable variables x, y, z, . . . : S of each type; possibly, constants c, d, . . . : S, relation
symbols R ⊆ S1, . . . , Sn, and function symbols f : S1, . . . , Sn → S.

The class of terms of L is defined inductively as follows:

. a constant c : S or a variable x : S is a term of type S;

. if t1 : S1, . . . , tn : Sn are terms, and f : S1, . . . , Sn → S is a function symbol, then
f(t1, . . . , tn) is a term of type S.

The formulae of L are generated by the clauses

. ⊥ is a formula;

. for all types S and terms s, t : S, s = t is a formula;
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. for all relation symbols R ⊆ S1, . . . , Sn, and terms t1 : S1, . . . , tn : Sn, R(t1, . . . , tn)
is a formula;

. if ϕ,ψ are formulae, ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ, ∃x : S ϕ, and ∀x : S ϕ are formulae.

As before, we treat negation and coimplication as defined connectives.
An interpretation of L in a Heyting category H is obtained by choosing

(i) for each type S, an object JSK of H;

(ii) for each constant c : S, a global element JcK : 1→ JSK;

(iii) for each function symbol f : S1, . . . , Sn → S, a morphism JfK : JS1K× . . .× JSnK→
JSK;

(iv) for each relation symbol R ⊆ S1, . . . , Sn, a subobject JRK � JS1K× . . .× JSnK.

We will now extend this to an interpretation of all terms and formulae of L. Suppose
a term t : S, or a formula ϕ, have free variables x1 : S1, . . . , xn : Sn; then define
fv(t) ≡ fv(ϕ) := JS1K × . . . × JSnK. The idea is that t should be interpreted as a
morphism JtK : fv(t)→ JSK; while ϕ should be interpreted as a subobject JϕK � fv(ϕ)
- in Set, it would be the subset {(x1, . . . , xn) |ϕ(x1, . . . , xn)} of JS1K× . . .× JSnK.

Definition 3.7. The interpretation of a term t : S of L in H is defined by the inductive
clauses:

. if t is a variable x : S, JxK is the identity of JSK;

. given terms t1 : S1, . . . , tn : Sn, and a function symbol f : S1, . . . , Sn → S,
Jf(t1, . . . , tn)K is the composite morphism

fv(f(t1, . . . , tn))
∏n
i=1 fv(ti)

∏n
i=1JSiK JSK ,

〈π1,...,πn〉 Jt1K×...×JtnK JfK

where πi is the projection fv(f(t1, . . . , tn))→ fv(ti), for i = 1, . . . , n.

Definition 3.8. The interpretation of a formula ϕ of L in H is defined by the inductive
clauses:

. J⊥K is the minimal subobject 0 � 1;

. for s, t : S, Js = tK � fv(s = t) is the equaliser of the diagram

fv(s)

fv(s = t) JSK ,

fv(t)

JsK

JtK

where the left side morphisms are product projections;

. for a relation symbol R ⊆ S1, . . . , Sn, and terms t1 : S1, . . . , tn : Sn, JR(t1, . . . , tn)K
is the pullback of JRK � JS1K× . . .× JSnK along the morphism

fv(R(t1, . . . , tn))
∏n
i=1 fv(ti)

∏n
i=1JSiK ;

〈π1,...,πn〉 Jt1K×...×JtnK
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. given formulae ϕ, ψ, with interpretations JϕK � fv(ϕ), JψK � fv(ψ), and product
projections

fv(ϕ ∧ ψ)

fv(ϕ) fv(ψ) ,

π1 π2

we define

Jϕ ∧ ψK := π∗1JϕK ∧ π∗2JψK ,
Jϕ ∨ ψK := π∗1JϕK ∨ π∗2JψK ,

Jϕ→ ψK := π∗1JϕK→ π∗2JψK ,

where the operations are performed in Sub(fv(ϕ ∧ ψ));

. given a formula ϕ with interpretation JϕK � fv(ϕ), let π′ be the composite pro-
jection

fv(ϕ ∧ (x = x)) fv(ϕ) fv(∃x : S ϕ) ;π

then we define

J∃x : S ϕK := ∃π′ π∗JϕK ,
J∀x : S ϕK := ∀π′ π∗JϕK .

At last, we can define a notion of (local) truth of a formula in a category.

Definition 3.9. Let ϕ be a formula of L, and a : X → fv(ϕ) a morphism of H (a
generalised element). We say that X forces ϕ(a), in symbols

X 
 ϕ(a) ,

if the pullback a∗JϕK of JϕK � fv(ϕ) along a is the maximal subobject of X.
We just write 
 ϕ(a) for 1 
 ϕ(a). If ϕ is a sentence of L, we say that ϕ is true in

H if 
 ϕ.

The forcing relation has the following, important properties, which follow immedi-
ately from the definition.

Monotonicity. If X 
 ϕ(a), then for all morphisms f : Y → X in H, also
Y 
 ϕ(af).

Local character. If f : Y � X is an epimorphism and Y 
 ϕ(af), then also
X 
 ϕ(a).

It is possible to give an inductive definition of the forcing relation - the so-called
Kripke-Joyal semantics of first order logic; a far-reaching generalisation of the Kripke
semantics for intuitionistic logic, which are indeed the special case where the underlying
category is a poset.

The fundamental fact about these semantics is that they are sound and complete
for intuitionistic first order logic; so a purely intuitionistic proof is a valid proof in
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any Heyting category. In fact, if one considers the internal language of the category
- whose types correspond to the objects of H, the function symbols correspond to the
morphisms, etc. - and interprets it in in the obvious way, one can use intuitionistic
reasoning, combined with the Kripke-Joyal semantics, to prove “logically” facts about
the category itself.

We will specialise to the case of Grothendieck topoi, where the Kripke-Joyal seman-
tics can be simplified. So let H = Sh(C,K) for some site (C,K). The advantage of
Grothendieck topoi, here, is that one can force only with representables, i.e. objects of
the form ayC, for C an object of C; this is due to their being separating for the category,
but this is not a notion we need to make explicit.

So suppose we have fixed an interpretation of L in H, and let a : ayC → fv(ϕ) be
a generalised element; by the adjunction a a i, this corresponds to a unique a : yC →
fv(ϕ) in [Cop,Set], which in turn, by the Yoneda lemma, corresponds to a unique
element a ∈ fv(ϕ)C.

Moreover, ayC 
 ϕ(a) if and only if a factors through JϕK; but, again by the Yoneda
lemma, this happens if and only if the element a ∈ fv(ϕ)C constructed earlier is in fact
in JϕKC. Therefore, we can redefine the forcing relation as follows:

C 
 ϕ(a) if and only if a ∈ JϕKC .

Monotonicity and local character take the following form.

Monotonicity. If C 
 ϕ(a), then for all morphisms f : D → C in C, also
D 
 ϕ(a · f).

Local character. If {fi : Ci → C}i∈I is a K-cover of C, and, for all i ∈ I,
Ci 
 ϕ(a · fi), then also C 
 ϕ(a).

We are now able to give an inductive formulation of forcing in a Grothendieck topos,
the so-called sheaf semantics.

Theorem 3.10. Suppose that we have fixed an interpretation of L in the Grothendieck
topos Sh(C,K). Let C be an object of C, ϕ,ψ formulae of L, and a ∈ fv(ϕ ∧ ψ)C.
Then

(i) C 
 ⊥(a) if and only if the empty family is a K-cover of C;

(ii) C 
 (s = t)(a) if and only if JsKC(a) = JtKC(a);

(iii) C 
 R(t1, . . . , tn)(a) if and only if (Jt1KC(a), . . . , JtnKC(a)) ∈ JRKC;

(iv) C 
 ϕ(a) ∧ ψ(a) if and only if C 
 ϕ(a) and C 
 ψ(a);

(v) C 
 ϕ(a) ∨ ψ(a) if and only if there exists a K-cover {fi : Ci → C}i∈I of C such
that, for each i ∈ I, either Ci 
 ϕ(a · fi) or Ci 
 ψ(a · fi);

(vi) C 
 ϕ(a) → ψ(a) if and only if for all f : D → C in C, D 
 ϕ(a · f) implies
D 
 ψ(a · f);

(vii) C 
 ∃y : S ϕ(a, y) if and only if there exist a K-cover {fi : Ci → C}i∈I of C, and
elements bi ∈ JSKCi, i ∈ I, such that, for all i ∈ I, Ci 
 ϕ(a · fi, bi);
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(viii) C 
 ∀y : S ϕ(a, y) if and only if for all f : D → C in C, and for all b ∈ JSKD,
D 
 ϕ(a · f, b).

In the case where JSK = ayB for some object B of C, the last clause can be simplified:

(viii’) C 
 ∀y : S ϕ(a, y) if and only if C ×B 
 ϕ(a · π1, π2).

Proof. This is [34, Theorem VI.7.1].

With this inevitably rushed survey of categorical logic, we can leave the preliminaries
aside for a while, and concentrate on the categories of interest.

3.2 The filter construction

In [9], Blass introduced a category of filters of sets and “continuous” maps between
them; rediscovered by Moerdijk, it was used as the underlying category of a site, whose
sheaves provided a model of nonstandard arithmetic.

This category arises from Set as a special case of a general construction - the filter
construction - whose properties and functoriality were studied by Butz in [10]. When ap-
plied on arbitrary categories with finite limits, it can be considered as a completion of the
subobject posets under arbitrary meets. We will briefly discuss the general construction,
following Butz, before specialising to the case of Set.

We start by recalling the definition of filter on a ∧-semilattice, i.e. on a poset with
all finite meets.

Definition 3.11. Let S be a ∧-semilattice. A filter on S is an inhabited, upwards closed
subset of S that is closed under binary meets.

We say that a filter is proper if it does not coincide with S; otherwise, it is non
proper.

Following Palmgren, we will work more often with filter bases, indexed by a set I.

Definition 3.12. A filter base FI on S is an inhabited set {Fi}i∈I of elements of S,
such that, for all i, j ∈ I, there exists k ∈ I such that Fk ≤ Fi ∧ Fj .

A filter base generates a filter, as follows: A belongs to the filter if and only if there
exists i ∈ I such that Fi ≤ A.

Notice that a filter base generates a non proper filter if and only if it contains the
bottom element.

In every category C with finite limits, the subobject posets are in fact ∧-semilattices;
it is therefore possible to speak of filters of subobjects. That is sufficient to perform the
filter construction.

Definition 3.13. Let C be a finitely complete category. The filter category FC over C
is described by the following data.

• Objects are pairs (C,FI), where C is an object of C, and FI is an I-indexed filter
base on Sub(C).

We will usually write F for (C,FI), when the underlying object and indexing set are
not relevant, and just call it a filter. We say that the Fi, i ∈ I, are the base objects of
the filter.
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• Morphisms are “germs of continuous morphisms”. A continuous morphism α :
(C,FI)→ (D,GJ) is a partial morphism

Fi

C D

α

in C, defined on some base object Fi, such that for all j ∈ J , there exists i′ ∈ I
such that Fi′ ≤ α∗Gj in Sub(C).

We declare two such morphisms α : Fi → D, α′ : Fj → D equivalent if there exists
k ∈ I such that Fk ≤ Fi ∧ Fj , and α

∣∣
Fk

= α′
∣∣
Fk

; that is, the following pullback
square commutes:

Fk Fi

Fj D .

α

α′

We have an embedding of C into FC, where an object C of C is identified with the
“simple” filter (C, {C}). We will usually still denote the latter with C.

We will not be overly pedantic about distinguishing between morphisms and their
germs, and will write both in the same style.

Lemma 3.14. The category FC is finitely complete.

Proof. It is sufficient that FC has a terminal object, binary products and equalisers. We
give their construction, and omit the proof of the universal properties.

The terminal object is the filter (1, {1}). The product of (C,FI) and of (D,GJ) is
the filter (C ×D, (F × G)I×J), where F × G(i,j) := Fi × Gj , for all i ∈ I, j ∈ J .

The equaliser of two morphisms α, β : (C,FI)→ (D,GJ), represented by α : Fi → D
and β : Fj → D, is the inclusion (C ′, (F ∧ C ′)I) � (C,FI), where C ′ is the equaliser of
α and β in C, and (F ∧ C ′)i := Fi ∧ C ′ for all i ∈ I.

Lemma 3.15. A morphism α : F → G of FC, defined on a base object Fi, is a monomor-
phism if and only if there exists a base object Fj ≤ Fi such that α

∣∣
Fj

is a monomorphism

in C.

Proof. See [10, Lemma 2.2].

Proposition 3.16. For all filters F in FC, Sub(F) is a meet-complete semilattice, and,
for all α : F → G, the change of base functor α∗ preserves all meets.

Proof. By the previous lemma, if α : (C,FI) � (D,GJ) is a monomorphism, there is
some base object Fi such that α

∣∣
Fi

: Fi � D is a monomorphism in C. Then (C,FI)
is isomorphic to the filter (D, (G ∧ Fi)J). It follows that subobjects of (D,GJ) are in
one-to-one correspondance to objects (D,G′J ′), such that the base G′J ′ generates a filter
larger than GJ .
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Given an arbitrary family of subobjects
{(
D,G(i)

J(i)

)}
i∈I , let H be the filter generated

by finite meets of the form

G(i1)

j(i1)
∧ . . . ∧ G(in)

j(in) ,

for (i1, . . . , in) an arbitrary finite sequence in I, and j(ik) ∈ J (ik), k = 1, . . . , n. Then∧
i∈I

(
D,G(i)

J(i)

)
' (D,H) .

That this is preserved by change of base can be easily verified by the explicit construction
of pullbacks in FC.

An important feature of the filter construction is that it preserves some of the addi-
tional properties that C may have.

Proposition 3.17. Let C be a finitely complete category.

(a) If C is regular, then FC is also regular.

(b) If C is coherent, then FC is also coherent.

Proof. See [10, Proposition 3.1] and [10, Proposition 3.2], respectively.

Moreover, if C has all finite coproducts, then FC has them too. In this case, the
initial object of FC is the simple filter (0, {0}); this is isomorphic to any non proper
filter (C,FI), where Fi = 0 for some i ∈ I. Given two filters (C,FI) and (D,GJ), their
coproduct in FC is the filter (C + D, (F + G)I×J), where F + G(i,j) := Fi + Gj , for all
i ∈ I, j ∈ J .

It is not, however, the case that FH is necessarily a Heyting category, when H is.
But this is not a problem, since we really only need FSet to be a coherent category.

As it happens, coherent categories admit a “natural” Grothendieck topology, some-
times called the precanonical topology: for all objects C of C, a K-cover of C is a finite
family {fi : Ci → C}ni=1, such that the union of the images of the fi is the whole of C.

As shown in [24, Example C2.1.12.(d)], K is subcanonical ; that is, representable
presheaves, of the form yC, for C an object of C, are K-sheaves.

Explicitly, for a filter category FC, that {βk : Gk → F}nk=1 is a K-cover means that,
for all choices of base objects Gk,jk of Gk, k = 1, . . . , n, there exists a base object Fi of
F such that

Fi ≤ β1G1,j1 ∨ . . . ∨ Gn,jn .

Besides K, we will also consider the smaller topology K1, where covers of C are
single covering morphisms {f : D � C}. A fortiori, K1 is also subcanonical for coherent
categories.

Finally, everything is set for the definition of our sheaf models.

Definition 3.18. We call U the Grothendieck topos Sh(FSet,K1), and N its subtopos
Sh(FSet,K).

N , for nonstandard universe, is the name used by Palmgren for Moerdijk’s topos;
and we used the letter U to remind of the uniform Diller-Nahm interpretation.



The filter construction 61

As for all Grothendieck topoi, the global sections functors

Γ1 : U → Set ,

Γ : N → Set ,

sending a sheaf F to the set Hom(1, F ), have left adjoints ∆1 : Set→ U , and ∆ : Set→
N , respectively - the constant objects functors. These can be explicitly characterised as
follows: for all sets S, at all filters F of FSet,

(∆1S)F = {α : F → S | α is constant} ,
(∆S)F = {α : F → S | α takes a finite number of values} .

Here, S is identified with the simple filter (S, {S}). Since ∆1 and ∆ are left adjoints,
they preserve coproducts; in particular, if 2 := 1 + 1 in the relevant topos,

2 ' ∆12 in U ,
2 ' ∆2 ≡ y2 in N .

It follows that the Yoneda embedding in N preserves all finite coproducts of copies of
1, and no coproducts in U . Thus, in U , there is a proper monomorphism m : 2 � y2;
moreover, since the sheafification functor a of N is itself left adjoint to the inclusion of
N in U , we have that a∆12 ' y2. We say that m is a K-dense morphism.

Indeed, this fact alone characterises the topology of N with respect to U . To make
this rigorous, we will temporarily assume that our Grothendieck topoi have a subobject
classifier, i.e. are elementary topoi. In this way, we can use a more general notion of
“topology” on a topos, due to Lawvere and Tierney.

Definition 3.19. Let E be an elementary topos. A local operator in E is a morphism
j : Ω → Ω, where Ω is the subobject classifier of E , such that the following diagrams
commute:

1

Ω Ω ,

true
true

j

Ω

Ω Ω ,

j
j

j

Ω× Ω Ω

Ω× Ω Ω .

∧

j×j j

∧

(3.1)

Let X be an object of E . A monomorphism A� X of X is j-dense if the diagram

1

X Ω Ω

true

!

charA j

commutes, for charA the characteristic morphism of A; so j charA classifies the maximal
subobject of X.

Let F be an object of E . We say that F is a j-sheaf if, for all j-dense monomorphisms
A� X, the induced morphism

HomE(X,F )→ HomE(A,F )

is an isomorphism. We write shj(E) for the subcategory of j-sheaves of E .
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In a Grothendieck topos, the subobject classifier admits the following description.

Definition 3.20. Given a Grothendieck topology J on C, we say that a sieve S on an
object C of C is J-closed if, for all f : D → C, if the pullback sieve f∗S := {g : E →
D | fg ∈ S} on D is J-covering, then f ∈ S.

The subobject classifier in Sh(C, J) is defined by

ΩC := {S | S is a J-closed sieve on C} ,

for all objects C of C. A local operator j characterises a subobject of Ω, hence selects
for all objects a family of sieves; the conditions (3.1) guarantee that this defines a
Grothendieck topology on C.

In fact, the two notions are equivalent in the case of presheaf topoi: a Grothendieck
topology J on C uniquely defines a local operator j on [Cop,Set], and vice versa, so
that Sh(C, J) = shj [C

op,Set].
Local operators on a topos E form a lattice, induced by the lattice structure of Ω; so

it makes sense to compare local operators, and speak of a smaller, or larger one relative
to another.

Proposition 3.21. Let m : A� X be a monomorphism in a topos E. Then there exists
a smallest local operator j on E such that m is j-dense.

Proof. See [24, Example A4.5.14.(b)].

Such a local operator can be constructed explicitly in two steps, as described by [24,
Proposition A4.5.12].

1. First, we take the image in the subobject classifier Ω of the characteristic map of
m. This yields a monomorphism D � Ω.

2. Then, we apply the consecutive transformations D 7→ Dr 7→ Drl, described by the
formulae

Dr(q) := ∀p : Ω
(
(D(p) ∧ p→ q)→ q

)
,

Drl(p) := ∀q : Ω
(
(Dr(q) ∧ p→ q)→ q

)
in the internal language of the topos.

One checks that there is an inclusion D � Drl, and that the characteristic map of Drl

is the requested local operator.
We can now provide a characterisation of N with respect to U .

Proposition 3.22. Let j be the smallest local operator on U such that m : 2 � y2 is
j-dense. Then shj(U) ' N .

Proof. By the construction of characteristic maps in Grothendieck topoi [34, Proposition
III.7.3], we have at all filters F , for all α : F → 2,

char2F(α) = {β : G → F |αβ is constant}.

Clearly, char2F(α) is a sieve on F , closed for the topology K1.
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Let F1 := α∗0, F2 := α∗1 be the pullbacks along α of the two global elements of 2
in FSet. Then F ' F1 +F2, and β ∈ char2F(α) if and only if β factors either through
F1 or through F2. Thus, there is a bijection

char2F(α) ' yF1 + yF2 ,

provided that, if F1 or F2 is the initial filter, it is not counted in the sum.
Now, every decomposition F ' F1 + F2 gives a morphism α : F → 2 such that

F1 ' α∗0 and F2 ' α∗1, in the obvious way. It follows that

DF := {yF1 + yF2 | F ' F1 + F2} ' im(char2)F .

By sheaf semantics, for every K1-closed sieve R on F , R ∈ Dr F if and only if

for all α : G → F and S ∈ ΩG, if S ∈ DG and, for all β : H → G ,
β∗S ⊆ (αβ)∗R , then α ∈ R .

Since S ⊆ α∗R implies that, for all β, β∗S ⊆ (αβ)∗R, and by definition of D, this is
equivalent to the simpler condition

for all α : G → F , G ' G1 + G2 , if α∗R ⊇ yG1 + yG2 , then α ∈ R .

Informally, this states that, if any pullback of R can be decomposed as a sum yG1 +yG2,
then one of the factors G1, G2 is 0, so the pullback sieve is actually the maximal sieve.
We say that R is indecomposable if it satisfies this condition.

Finally, we have that for all S ∈ ΩF , S ∈ DrlF if and only if

for all α : G → F and R ∈ ΩG, if R ∈ DrG and α∗S ⊆ R , then R is maximal .

Again, this is just ordinary sheaf semantics, and we have already performed the possible
simplifications. This states that the only K1-closed, indecomposable sieves containing a
pullback of S are the maximal sieves.

Let j be the characteristic map of Drl. We will prove that all j-sheaves are also
K-sheaves; by minimality of j, and the fact that m is K-dense, it will follow that
shj(U) ' N .

Clearly, the sieves on F generated by a coproduct pair {Fi → F1 + F2}2i=1, F '
F1 + F2, are j-covering. For suppose that, for some α : G → F , α∗(yF1 + yF2) '
yα∗F1+yα∗F2 is contained in an indecomposable closed sieve R. Since FSet is coherent,
finite coproducts are stable under pullback, and α∗F1 + α∗F2 ' α∗(F1 + F2) ' G; by
definition, then, R contains idG , hence is maximal.

Now, let X be a j-sheaf, and {xk ∈ XGk}nk=1 a matching family of elements of X for a
K-cover {βk : Gk → F}nk=1. By the previous remark, there exists a unique amalgamation
x12 ∈ X(G1 + G2) of {x1, x2}.

Repeat with {x12, x3}, which is obviously matching for the j-covering {G1 + G2,G3}
of G1 + G2 + G3; this gives a uniquely determined x123 ∈ X(G1 + G2 + G3). After n − 1
steps, we obtain an element x1...n in X(G1 + . . .+ Gn).

Since β1 + . . . + βn : G1 + . . . + Gn � F is a covering map, and X is also a K1-
sheaf, we can find a unique x ∈ XF such that X(β1 + . . . + βn)(x) = x1...n. This is a
necessarily unique amalgamation of the xk, k = 1, . . . , n. It follows that X is a K-sheaf;
therefore, shj(U) is a subtopos of N . The reverse inclusion is obvious, so this proves the
proposition.
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Since in the last part of the proof we only used covering sieves that were already in
D, and Drl is the smallest Grothendieck topology containing D, we could have avoided
its explicit construction; we only included it as an example of the use of sheaf semantics
in proofs about topoi.

Notice also that the proof goes through for Sh(FC,K1) and Sh(FC,K), given any
coherent category C.

So, we have defined the Grothendieck topoi U and N , and established their topos-
theoretic relation. In the next section, we will study their properties side by side, and
see that they mirror those of the uniform Diller-Nahm and nonstandard Dialectica inter-
pretations, respectively; so that the transition from single covering morphisms to finite
families can be seen as the categorical analogue of herbrandisation.

3.3 Sheaf semantics of the filter topoi

Let L be a many sorted first order language, and suppose we have fixed an interpretation
of L in Set. We call formulae of L internal , and denote them with small Greek letters.
We also want the types of L to be closed under the clause

. if S is a type, then S∗ is a type,

where S∗ is meant to denote the type of finite sequences of elements of type S. We will
borrow all the notation from Chapter 1 in handling finite sequences.

We will identify types, function and relation symbols of L with their interpretation
in Set, and reserve the square bracket notation for the derived interpretations that we
are now going to define. We will take advantage of this semantic overload, and say, for
instance, that the type S is inhabited, or that it is infinite, if its interpretation in Set
is; and also that a formula ϕ is true, if its interpretation is true in Set.

Let Lst be the extension of L with a unary predicate symbol stS ⊆ S for each type
S. We denote formulae of Lst with capital Greek letters. We will use abbreviations

∀stx : S Φ(x) := ∀x : S (stS(x)→ Φ(x)) ,

∃stx : S Φ(x) := ∃x : S (stS(x) ∧ Φ(x)) ,

as well as the defined predicate

hyperS(s) := ∀stx : S (x ∈ s) ,

for s : S∗, with the relative quantifiers

∀hyps : S∗Φ(s) := ∀s : S∗ (hyperS(s)→ Φ(s)) ,

∃hyps : S∗Φ(s) := ∃s : S∗ (hyperS(s) ∧ Φ(s)) .

We will often drop the subscript, and just write st(x), or hyper(s).
We simultaneously define interpretations of Lst in U and in N , as follows:

(i) for each type S, JSK := yS;

(ii) for each constant c : S, JcK := yc : 1→ yS;

(iii) for each function symbol f : S1, . . . , Sn → S, JfK := yf : y(S1 × . . .× Sn)→ yS;
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(iv) for each relation symbol R ⊆ S1, . . . , Sn of L, JRK := yR� y(S1 × . . .× Sn);

(v) for each type S, JstSK := ∆1S in U , and JstSK := ∆S in N .

In particular, JstNK is the natural numbers object both in U and in N ; in the latter, the
larger sheaf JNK is a nonstandard model of arithmetic.

The following, fundamental theorem connects the forcing semantics of internal for-
mulae in U and in N with truth in the metatheory. It is an adaptation of [46, Theorem
1], which is itself an extension of [36, Lemma 2.1].

We write 
U , 
N for the forcing relation in U , and N respectively; and just 
 for
statements that are true of both.

Theorem 3.23. Let ϕ(x) be an internal formula, with free variable x of type S, and
(C,FI) a filter. For all α ∈ JSKF ,

F 
N ϕ(α)

if and only if there exists i ∈ I such that, for all u ∈ Fi, it holds that ϕ(α(u)).
If ϕ is also ∨-free, then the same condition is equivalent to

F 
U ϕ(α) .

Proof. We proceed by induction on the structure of ϕ, as in Theorem 3.10; we will do
the case of disjunction last, since it only works in N . The clauses (i) and (ii) are trivial.

(iii) Suppose F 
 R(a), where we assumed, without loss of generality, that R depends
explicitly on a single variable x : S. By sheaf semantics, this means that a ∈
JRKF ⊆ JSKF ; by the interpretation we chose, this says that a, as a morphism
F → S in FSet, factors through R.

But this is precisely the fact that, for some i ∈ I, the image of the base set Fi is
contained in R, which was to be proved.

(iv) Suppose F 
 ϕ(α) ∧ ψ(α) . By sheaf semantics, this is equivalent to F 
 ϕ(α)
and F 
 ψ(α); by the induction hypothesis, there exist i, j ∈ I such that, for all
u ∈ Fi, and all v ∈ Fj ,

ϕ(α(u)) ∧ ψ(α(v)) .

It now suffices to pick k ∈ I such that Fk ⊆ Fi ∩ Fj .

(vi) Suppose first that there exists i ∈ I such that, for all u ∈ Fi, ϕ(α(u)) implies
ψ(α(u)). Take any morphism β : (D,GJ) → F , and suppose G 
 ϕ(αβ). By the
induction hypothesis, there exists j ∈ J such that, for all v ∈ Gj , ϕ(αβ(v)).

By continuity of β, there exists j′ ∈ J such that Gj′ ⊆ β∗Fi. Taking Gk ⊆ Gj ∩Gj′ ,
we obtain, by the assumption, that for all v ∈ Gk, ψ(αβ(v)). Again, by the
induction hypothesis, G 
 ψ(αβ) .

Conversely, suppose F 
 ϕ(α) → ψ(α). Define a filter (C,GI), with Gi := {u ∈
Fi |ϕ(α(u))}; the inclusion ı : G � F is continuous. By construction, G 
 ϕ(αı);
hence, by the assumption, G 
 ψ(αı).

By the induction hypothesis, this means that there exists i ∈ I such that, for all
u ∈ Fi such that ϕ(α(u)) holds, ψ(α(u)) holds. But this is precisely what we
wanted to prove.
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(vii) Suppose that F 
N ∃y : T ϕ(α, y); then, there exist a K-cover {βk : Gk → F}nk=1,
and elements ζk ∈ JT KGk, k = 1, . . . , n, such that

Gk 
 ϕ(αβk, ζk) , k = 1, . . . , n .

By the induction hypothesis, there exist base sets Gk,jk of Gk, k = 1, . . . , n, such
that, for all v ∈ Gk,jk , ϕ(αβk(v), ζk(v)); implying ∃y ∈ T ϕ(αβk(v), y).

Now, by the cover condition, there exists i ∈ I such that

Fi ⊆ β1G1,j1 ∪ . . . ∪ βnGn,jn ;

hence, for all u ∈ Fi, ∃y ∈ T ϕ(α(u), y). For the same proof in U , just take n = 1
in the cover.

Conversely, suppose that there is some i ∈ I such that, for all u ∈ Fi,

∃y ∈ T ϕ(α(u), y) .

Define a filter (C,GI), with Gi := {(u, y) ∈ Fi × T |ϕ(α(u), y)}, for all i ∈ I. Then
the first projection π1 : G � F is covering, and, by the induction hypothesis,

G 
 ϕ(απ1, π2) .

By sheaf semantics, it follows that F 
 ∃y : T ϕ(α, y).

(viii) Assume F 
 ∀y : T ϕ(α, y); since JT K is representable, this is equivalent to

F × T 
 ϕ(απ1, π2) .

Since the base sets of F × T are of the form Fi × T , i ∈ I, by the induction
hypothesis, there exists i ∈ I such that, and for all u ∈ Fi, for all y ∈ T , ϕ(α(u), y).

Conversely, assume there exists i ∈ I such that, for all u ∈ Fi,

∀y ∈ T ϕ(α(u), y) .

Let β : (D,GJ) → F , and ζ ∈ JT KG. By continuity of β, there exists some j ∈ J
such that Gj ⊆ β∗Fi. Take k ∈ J , such that Gk ⊆ Gj , and ζ is defined on Gk
as a morphism G → T . Then, for all v ∈ Gk, ϕ(αβ(v), ζ(v)). By the induction
hypothesis,

G 
 ϕ(αβ, ζ) ;

and by arbitrariety of β and ζ it follows that F 
 ∀y : T ϕ(α, y).

This concludes the proof for U , and ∨-free formulae. In N , we can also handle the case
of disjunction.

(v) Suppose F 
N ϕ(α)∨ψ(α). By sheaf semantics, there exists a K-cover {βk : Gk →
F}nk=1 such that, for each k = 1, . . . , n, either Gk 
N ϕ(αβk) or Gk 
N ψ(αβk).
Using the induction hypothesis on the disjuncts that hold, we find base sets Gk,jk
of Gk, k = 1, . . . , n, such that for all k, and for all v ∈ Gk,jk ,

ϕ(αβk(v)) ∨ ψ(αβk(v)) .
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By the cover condition, there exists i ∈ I such that

Fi ⊆ β1G1,j1 ∪ . . . ∪ βnGn,jn ;

therefore, for all u ∈ Fi, ϕ(α(u)) ∨ ψ(α(u)) .

Conversely, assume there exists i ∈ I such that, for all u ∈ Fi, ϕ(α(u)) ∨ ψ(α(u)).
We define filters (C,G1,I), (C,G2,I), such that, for all i ∈ I,

G1,i := {u ∈ Fi |ϕ(α(u))} ,
G2,i := {u ∈ Fi |ψ(α(u))} .

By construction, G1 
N ϕ(α) and G2 
N ψ(α); and, by the assumption, {Gk �
F}2k=1 is a K-cover. Hence, by sheaf semantics, F 
N ϕ(α) ∨ ψ(α).

With this, the proof is completed.

Corollary 3.24 (Transfer theorem). Let ϕ be an internal sentence. Then ϕ is true if
and only if 
N ϕ. If ϕ is also ∨-free, then ϕ is true if and only if 
U ϕ.

The transfer theorem should be compared with Corollary 2.8 and Corollary 2.17:
there, it was herbrandisation that allowed to extend conservativity to formulae with
disjunctions; here, it is the passage from singleton to finite covers.

Theorem 3.23 says everything there is to know about internal formulae; we move on
to the semantics of the standardness predicate.

Lemma 3.25. Let F be a filter, S a type of L, and α ∈ JSKF . Then:

(a) F 
N stS(α) if and only if there exist a K-cover {βk : Gk → F}nk=1, and elements
x1, . . . , xn ∈ S, such that the diagrams

Gk F

1 S

βk

! α

xk

commute in FSet, i.e. αβk = xk!, for k = 1, . . . , n.

(b) F 
U stS(α) if and only if there exist a covering map β : G � F , and an element
x ∈ S, such that αβ = x! in FSet.

Proof. Follows immediately from the interpretation chosen for the standardness predi-
cate, and the description of ∆1S and ∆S.

Lemma 3.26. Let Φ(x, y) be an external formula, with free variables x : S and y : T ,
F a filter, and α ∈ JSKF . Then:

(a) F 
 ∀sty : T Φ(α, y) if and only if, for all y ∈ T , F 
 Φ(α, y!);

(b) F 
N ∃sty : T Φ(α, y) if and only if there exist a K-cover {βk : Gk → F}nk=1, and
elements y1, . . . , yn ∈ T , such that

Gk 
N Φ(αβk, yk!) , k = 1, . . . , n ,

or, equivalently, there exists t ∈ T ∗ such that F 
 ∃y ∈ t! Φ(α, y);
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(c) F 
U ∃sty : T Φ(α, y) if and only if there exists y ∈ T such that F 
U Φ(α, y!).

Proof. For item (a): the direction from left to right is immediate. Conversely, let β :
G → F , and ζ ∈ JT KG such that G 
 st(ζ). By the previous lemma, there exist a cover
{γk : Hk → G}nk=1, and elements y1, . . . , yn ∈ T (n = 1 in case we are in U), such that
ζγk = yk!, for k = 1, . . . , n. By the assumption, and monotonicity of the forcing relation,

Hk 
 Φ(αβγk, ζγk) , k = 1, . . . , n .

It follows by local character that G 
 Φ(αβ, ζ), which was to be proved.
For item (b): the direction from right to left is immediate. From left to right,

suppose F 
N ∃sty : T Φ(α, y); then there exist a cover {βk : Gk → F}nk=1, and elements
ζk ∈ JT KGk, such that

Gk 
N st(ζk) ∧ Φ(αβk, ζk) , k = 1, . . . , n .

By the previous lemma, then, for all k = 1, . . . , n, there exist a cover {γk` : Hk` → Gk}mk
`=1,

and elements yk1, . . . , ykmk
∈ T such that ζkγk` = yk`!, k = 1, . . . , n, ` = 1, . . . ,mk. The

thesis follows by taking the composition

{βkγk` : Hk` → Gk → F}k=1,...,n
`=1,...,mk

of all covers, which is still a cover.
For item (c): again, the direction from right to left is immediate. From left to right,

suppose F 
U ∃sty : T Φ(α, y); then there is a covering map β : G � F , and an element
ζ ∈ JT KG, such that

G 
U st(ζ) ∧ Φ(αβ, ζ) .

By the previous lemma, there exist another covering map γ : H � G, and an element
y ∈ T , such that ζγ = y!. Then

H 
U Φ(αβγ, y!) ,

and, by local character, F 
U Φ(α, y!).

With these lemmata, we are able to prove that the simple axioms that we imposed
on the standardness predicate in Chapter 1 hold both in N and in U . That the predicate
respects equality is immediate; that closed terms are standard amounts, in this context,
to the fact that, for all types S and elements α ∈ JSK1,


 stS(α) ,

as any morphism α : 1→ S is obviously constant.

Proposition 3.27. For all types S, T , the following statement is true in N and U :

∀stf : S → T ∀stx : S stT (f(x)) .

Proof. By Lemma 3.26, 
 ∀stf : S → T ∀stx : S stT (f(x)) if and only if, for all f ∈
(S → T ), and x ∈ S,


 stT (f !(x!)) .

But Jf !(x!)K = Jf(x)!K, and the latter is clearly standard.
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Proposition 3.28. The external induction schema IAst holds in N and U .

Proof. Let Φ(x, n) be an external formula, with x : S and n : N, F a filter, and α ∈ JSKF .
Suppose

F 
 Φ(α, 0!) ∧ ∀stn : N (Φ(α, n)→ Φ(α,Sn)) .

Then, by Lemma 3.26, we have that F 
 Φ(α, 0!) and that, for all n ∈ N, F 
 Φ(α, n!)
implies F 
 Φ(α,Sn!). By induction in the metatheory, we obtain that, for all n ∈ N,

F 
 Φ(α, n!) ,

so, again by the semantics of the external quantifiers, F 
 ∀stn : NΦ(α, n).

Lemma 3.26 has also the following easy consequence.

Corollary 3.29. Let ϕ be an internal formula.

(a) 
N ∀stx : S ∃sty : T ϕ(x, y) if and only if it is true that ∀x ∈ S ∃y ∈ T ϕ(x, y).

(b) If ϕ is also ∨-free,


U ∃stx1 : S1 ∀sty1 : T1 . . . ∃stxn : Sn ∀styn : Tn ϕ(x1, y1, . . . , xn, yn)

if and only if it is true that

∃x1 ∈ S1 ∀y1 ∈ T1 . . . ∃xn ∈ Sn ∀yn ∈ Tn ϕ(x1, y1, . . . , xn, yn) .

Finally, we give the following result without proof. If ϕ is an internal formula, let ϕst

be the formula of Lst where all quantifiers have been restricted to standard elements.

Proposition 3.30. Suppose ϕ is an internal formula, which is built up from quantifier-
free formulae using only ∧,∨,∃ and ∀. Then, if ϕ is true, 
N ϕst. If ϕ is also ∨-free,
then 
U ϕst.

Proof. See [45, Theorem 3.6].

We have, by now, a good picture of the semantics of first order logic in the filter
topoi. In the next section, we will start proving that the characteristic principles of
uniform Diller-Nahm and nonstandard Dialectica hold in U and N , respectively.

3.4 Characteristic principles

For the results in this section, we cannot take much credit, since a characterisation of
first order logic in the topoi Sh(FC,K), with C coherent, has already been provided
by Butz [10, Proposition 4.5], albeit with a different aim and formalism. The choice
of principles, however, is different, due to our focus on nonstandard arithmetic; and it
allows us to see herbrandisation “in action”, by providing proofs for U alongside N .

We start from the truly “nonstandard” principles, sequence overspill and underspill.

Proposition 3.31. (a) The principle OS∗ holds in N .

(b) The principle OS∗∨ holds in U .
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Proof. For item (a), let ϕ(y, s) be an internal formula, and, for item (b), an internal,
∨-free formula, with variables y : T , and s : S∗; from here the proof proceeds in the
same way for both cases.

Let (C,FI) be any filter, α ∈ JT KF , and assume

F 
 ∀sts : S∗ ϕ(α, s) .

By Lemma 3.26, for all s ∈ S∗, F 
 ϕ(α, s!); by transfer (Theorem 3.23), for all s ∈ S∗,
there exists i ∈ I such that, for all u ∈ Fi,

ϕ(α(u), s) .

Define a filter (C × S∗,GI×S∗), as follows: for all i ∈ I, t ∈ S∗,

G(i,t) := {(u, s) |u ∈ Fi ∧ t ⊆ s ∧ ϕ(α(u), s)} .

The filter condition is easily checked: given G(i,t), G(j,t′), pick k ∈ I such that Fk ⊆
Fi ∩ Fj , and t′′ := t · t′; then, G(k,t′′) ⊆ G(i,t) ∩ G(j,t′).

The projections π1 : G → F , and π2 : G → S∗ are clearly continuous. We now check

G 
 hyper(π2) .

By definition, this means G 
 ∀stx : S (x ∈ π); equivalently, for all x ∈ S, G 
 x! ∈ π.
By transfer, it suffices to prove that, for all x ∈ S, there exists (i, t) ∈ I × S∗, such that
for all u ∈ Fi, and s ⊇ t, it holds that x ∈ s; so we can take t := 〈x〉, and i ∈ I arbitrary.

Furthermore, G 
 ϕ(απ1, π2) holds by construction. Hence, in order to derive that

F 
 ∃s : S∗ (hyper(s) ∧ ϕ(α, s)) ,

it remains to show that π1 is covering. Let G(i,t) be an arbitrary base set of G. By the
assumption, we can find j ∈ I such that, for all u ∈ Fj , ϕ(α(u), t); then, if we choose
k ∈ I such that Fk ⊆ Fi ∩ Fj , we have that

Fk ⊆ π1 G(i,t) .

This concludes the proof.

Lemma 3.32. Let Φ(x) be an external formula, x : S, such that


 ∃x : S Φ(x) . (3.2)

Then

∀y : T
(
∀x : S (Φ(x)→ ϕ(y, x))→ ∃stx : S ϕ(y, x)

)
holds in N for all internal formulae, and in U for all internal, ∨-free formulae ϕ(y, x),
with y : T .

Proof. Let F be any filter, ϕ(y, x) an internal formula (∨-free in U), y : T , and α ∈ JT KF .
Suppose F 
 ∀x : S (Φ(x)→ ϕ(α, x)); equivalently,

F × S 
 Φ(π2)→ ϕ(απ1, π2) . (3.3)
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Assume (3.2). Then, there exist a cover {Gk → 1}nk=1 (n = 1 if we are in U), and
elements σk ∈ JSKGk, k = 1, . . . , n, such that

Gk 
 Φ(σk) , k = 1, . . . , n .

By our interpretation of the type S, the σk correspond to morphisms σk : Gk → S in
FSet; by monotonicity, we obtain

F × Gk 
 Φ(σkπ2) ,

which, by the commutativity of the diagrams

F × Gk Gk

F × S S ,

π2

id×σk σk

π2

for k = 1, . . . , n, is the same as F × Gk 
 Φ(π2(id× σk)).
Therefore, from (3.3), it follows, by monotonicity, that

F × Gk 
 ϕ(απ1, σkπ2) ;

by transfer, for all k = 1, . . . , n, there exist base sets Fik of F , Gk,jk of Gk, such that for
all u ∈ Fik , and v ∈ Gk,jk , it holds that ϕ(α(u), σk(v)).

Now, by the cover condition, G1,j1 ∪ . . .∪Gn,jn contains at least one element, so there
exists some x ∈ σ1G1,j1 ∪ . . . ∪ σnGn,jn . For such an x, taking Fi ⊆ Fi1 ∩ . . . ∩ Fin , and
using transfer,

F 
 ϕ(α, x!) ;

hence F 
 ∃stx : S ϕ(α, x), which was to be proved.

Proposition 3.33. (a) The principle US∗ holds in N .

(b) The principle US∗∨ holds in U .

Proof. Follows from the previous lemma, by taking Φ(s) := hyper(s), and using for
condition (3.2) the fact that, by sequence overspill, hyperfinite enumerations of any type
exist both in N and in U .

Given sequence overspill and underspill, one can adapt the proofs of Chapter 1
to show that other principles, including idealisation and the herbrandised generalised
Markov’s principle, hold in N and in U . However, one should pay attention to the fact
that, while finite types were all inhabited, and actually had infinite elements, in this con-
text a type S can be finite, or even empty. So, for instance, the implication OS∗ → OS
only holds for types with infinite elements: by definition of standardness, a finite set has
only standard elements.

Next, we deal with the characteristic principles of nonstandard Dialectica, and uni-
form Diller-Nahm, whose validity in the filter topoi is independent of the metatheory.

Proposition 3.34. (a) The principle NCR holds in N .

(b) The principle NU holds in U .
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Proof. Let F be any filter, Φ(z, x, y) an external formula, x : S, y : T, z : U , and
α ∈ JUKF . Assume F 
 ∀y : T ∃stx : S Φ(α, x, y) , or, equivalently,

F × T 
 ∃stx : S Φ(απ1, x, π2) .

By the semantics of the ∃st quantifier in N , this means that there exists s ∈ S∗ such
that

F × T 
N ∃x ∈ s! Φ(απ1, x, π2) ;

equivalently, since s! = s!π1, F 
N ∀y : T ∃x ∈ s! Φ(α, x, y). Therefore,

F 
N ∃sts : S∗ ∀y : T ∃x ∈ s! Φ(α, x, y) .

The proof for U is the same, with the semantics of ∃st providing a single x ∈ S
instead of a finite sequence, and leads to

F 
U ∃stx : S ∀y : T Φ(α, x, y) .

The next proof is a variant of one by Butz [10]. It utilises the following, general
result about Grothendieck topoi.

Lemma 3.35. Let (C, J) be a site. A set {fi : Ci → C}i∈I of morphisms of C is J-
covering if and only if the set {ayfi : ayCi → ayC}i∈I is jointly epimorphic in Sh(C, J).

Proof. See [34, Corollary III.7.7].

Proposition 3.36. (a) The principle HIPst
∀ holds in N .

(b) The principle IPst
∀∨ holds in U .

Proof. Let F be any filter, ϕ(z, x) an internal formula (∨-free in U), Ψ(z, y) an external
formula, with x : S, y : T , z : U , and α ∈ JUKF . Suppose

F 
 ∀stx : S ϕ(α, x)→ ∃sty : T Ψ(α, y) .

By the semantics of first order logic in a Heyting category, this is equivalent to

α∗J∀stxϕ(z, x)K ≤ α∗J∃sty : T Ψ(z, y)K

in Sub(yF). By the semantics of the ∀st predicate, we can write

α∗J∀stxϕ(z, x)K = α∗
∧
x∈S

Jϕ(z, x!)K ;

and, by the suitable transfer theorem, for all x ∈ S,

Jϕ(z, x!)K = y{z ∈ U |ϕ(z, x)} .

Since the Yoneda embedding preserves and reflects all limits, we obtain

α∗J∀stxϕ(z, x)K = y
(
α∗
∧
x∈S
{z ∈ U |ϕ(z, x)}

)
=: yH .
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For the consequence, we have, by the semantics of ∃st in N (the case of U is similar,
and easier), that

α∗J∃sty : T Ψ(z, y)K = α∗
∨
t∈T ∗

J∃y ∈ t! Ψ(z, y)K =

=
∨
t∈T ∗

α∗J∃y ∈ t! Ψ(z, y)K =:
∨
t∈T ∗

Ft ,

where we also used that unions are stable under pullback. Thus, there is a monomor-
phism m : yH�

∨
t∈T ∗ Ft.

Let ıt : Ft �
∨
t∈T ∗ Fy be the inclusions of the Ft in their union, for all t ∈ T ∗, and

consider the pullback diagrams

m∗Ft Ft

yH
∨
t∈T ∗ Ft .

ıt

m

Now, we use the fact that each m∗Ft can be covered with a family of representable
sheaves, to obtain a family {ft : yGt → yH}t∈T ∗ of morphisms, such that each mft
factors through a single Ft.

Moreover, since the {ıt : Ft �
∨
t∈T ∗ Ft}y∈T jointly cover

∨
t∈T ∗ Ft, and in a Heyting

category all epimorphisms are stable under pullback [34, Proposition IV.7.3], the family
{ft : yGt → yH}t∈T ∗ is jointly epimorphic over yH.

By the previous lemma, we can extract from it a family of the form {yβk : yGk →
yH}nk=1, where {βk : Gk → H}nk=1 is a K-cover in FSet (n = 1 in U). Let t := t1 · . . . · tn,
such that yβk factors through Ftk , k = 1, . . . , n. Then,

yH = α∗J∀stxϕ(z, x)K ≤ α∗
n∨
k=1

J∃y ∈ tk! Ψ(z, y)K = α∗J∃y ∈ t! Ψ(z, y)K .

Translating back to forcing semantics, this is precisely the statement that

F 
N ∀stx : S ϕ(α, x)→ ∃y ∈ t! Ψ(α, y) ,

from which it follows that

F 
N ∃stt : T ∗
(
∀stx : S ϕ(α, x)→ ∃sty ∈ tΨ(α, y)

)
.

Similar reasoning about U leads to

F 
U ∃sty : T
(
∀stx : S ϕ(α, x)→ Ψ(α, y)

)
.

So far, we used no principles whose constructive status is controversial, neither in the
construction of the model, nor in our proofs. However, for our last pair of characteristic
principles to hold, we must require that the axiom of choice hold in the metatheory.

On one hand, this does not necessarily spoil constructiveness: as we stated earlier,
it is possible to build N and U within Martin-Löf type theory, which is constructive,
predicative, and has a version of the axiom of choice. On the other hand, Martin-Löf
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type theory has intensional equality; in an extensional theory, where it is possible to
formalise Diaconescu’s theorem, the axiom of choice leads to classicality.

The systems of arithmetic that we considered in the first two chapters, on the other
hand, were extensional; so there appears to be a slight discrepancy between the proof-
theoretic systems, and their proposed models. This is an issue that deserves to be further
investigated.

Proposition 3.37. Suppose that the axiom of choice holds in the metatheory.

(a) The principle HACst then holds in N .

(b) The principle ACst then holds in U .

Proof. Let F be any filter, Φ(z, x, y) an external formula, x : S, y : T, z : U , and
α ∈ JUKF . Assume

F 
 ∀stx : S ∃sty : T Φ(α, x, y) ;

by Lemma 3.26, this means in N that, for all x ∈ S, there exists t ∈ T ∗ such that

F 
N ∃y ∈ t! Φ(α, x!, y) .

With the axiom of choice, we can find a function f ∈ S → T ∗ such that, for all x ∈ S,

F 
N ∃y ∈ f(x)! Φ(α, x!, y) .

Since Jf(x)!K = Jf !(x!)K, it follows that F 
N ∃stf : S → T ∗ ∀stx : S ∃y ∈ f(x) Φ(α, x, y).
The proof for U is completely analogous.

In fact, a herbrandised version of the axiom of choice would suffice for N ; but that
would be a strange axiom to have in one’s metatheory. The condition is necessary to a
certain extent, for HACst implies a herbrandised axiom of choice - call it HAC - in Set:
suppose

∀x ∈ S ∃y ∈ T ϕ(x, y) .

By Corollary 3.29, it follows that 
N ∀stx : S ∃sty : T ϕ(x, y). If HACst holds in N , we
can deduce


N ∃stf : S → T ∗ ∀stx : S ∃y ∈ f(x)ϕ(x, y) ;

and, applying the transfer theorem again, we obtain

∃f ∈ S → T ∗ ∀x ∈ S ∃y ∈ f(x)ϕ(x, y)

in Set. In the same way, the validity of ACst in U implies the axiom of choice for ∨-free
formulae, AC∨, in Set.

The relevant link between the internal and external world, here, is the validity of the
transfer rules TR∀∃, and TR∀∃∨, in N and U respectively, ensured by Corollary 3.29. If
the systems of Chapter 2 proved to be closed under these rules, we would immediately
obtain a proof that E-HAω∗ + HAC, and E-HAω∗

∨ + AC∨, are conservative extensions of
their base systems.

The transfer rules can be used to rule out unconstrained validity of other principles
in N and U , as in the following examples.
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Example 3.38. Let T (s) be a binary tree, i.e. an internal formula on binary sequences
such that

1. T (〈〉) holds, and

2. ∀n,m ∈ N ∀s ∈ 2N (T (s̄m) ∧ n ≤ m)→ T (s̄n), where s̄n := 〈s0〉 · . . . · 〈sn−1〉.

The fan theorem is the statement that for any such T , if, for all sequences s ∈ 2N, there
exists n ∈ N such that ¬T (s̄n), then there exists some n ∈ N that works uniformly for
all s ∈ 2N.

We consider the following, external version of the fan theorem:

FANst : ∀sts : 2N ∃stn : N¬T (s̄n)→ ∃stn : N ∀sts : 2N ¬T (s̄n) .

We claim that, if FANst holds in N , then the fan theorem holds in the metatheory. For
suppose that, for all s ∈ 2N, there exists n ∈ N such that ¬T (s̄n). By transfer,


N ∀sts : 2N ∃stn : N¬T (s̄n) ;

and, if FANst holds, we deduce


N ∃stn : N ∀sts : 2N ¬T (s̄n) .

This means that there exists a finite sequence t of natural numbers, such that


N ∃n ∈ t! ∀sts : 2N ¬T (s̄n) .

By condition 2 on binary trees, we have that, if ¬T (s̄n) and m ≥ n, then also ¬T (s̄m);
therefore, picking ñ := max{t0, . . . , t|t|−1}, we are sure that


N ∀sts : 2N ¬T (s̄ñ!) .

By transfer, for all s ∈ 2N, ¬T (s̄ñ), and we have proved the fan theorem.

Example 3.39. Since US∗ holds in N , by Proposition 1.36, LLPOst holds as well. Of
course, that is not true of U , as the principle is incompatible with the disjunction prop-
erty.

A stronger principle than LLPO0 is

LPO0 : ∀n : Nϕ(n) ∨ ∃n : N¬ϕ(n) ,

the limited principle of omniscience, where ϕ(n) ranges over decidable formulae of arith-
metic. It was shown by Palmgren [46, Proposition 14] that if the following, external
version of LPO0,

LPOst
0 : ∀stn : Nϕ(n) ∨ ∃stn : N¬ϕ(n) ,

holds in N , then LPO0 holds in the metatheory. For let ϕ(n) be any internal, decidable
formula, and suppose


N ∀stn : Nϕ(n) ∨ ∃stn : N¬ϕ(n) .

Then, there exist a K-cover {Gk → 1}mk=1, and elements n1, . . . , nm ∈ N, such that, for
each k = 1, . . . ,m, either Gk 
N ∀stn : Nϕ(n), or Gk 
N ¬ϕ(nk!).



76 Chapter 3 Categorical models

For all k = 1, . . . ,m, we can check whether ϕ(nk) holds. If it holds for all k, then

Gk 
N ∀stn : Nϕ(n) , k = 1, . . . ,m,

and, by local character, 
N ∀stn : Nϕ(n); by transfer, for all n ∈ N, ϕ(n). Otherwise,
¬ϕ(nk) for some k, so there exists n ∈ N such that ¬ϕ(n). This proves the limited
principle of omniscience.

Finally, we state, without proof, the following result by Palmgren.

Proposition 3.40. The principle CSAT holds in N .

Proof. Follows from [49, Theorem 3.4], and [50, Theorem 3.1].

We also point out that N has an interesting subcategory of ¬¬ -sheaves (that is,
sheaves with respect to the local operator ¬¬ : Ω → Ω), with an internal logic that is
classical, yielding a categorical model of Nelson’s IST. This has been studied by Awodey
and Eliasson in [3, 13].

With this, we conclude our present analysis of the filter topoi N and U . Before mov-
ing on, we want to remark that, irrespective of any interest in nonstandard arithmetic,
and with the caveat about ACst and the axiom of choice, U also provides a model for the
logic of the “standard” Diller-Nahm translation, under the interpretation J0K∧ := ∆1N,
J0→ 0K∧ := ∆1(N→ N), etc. In this case, we obtain a weaker transfer theorem for ∨-free
formulae whose quantifiers are all bounded, i.e. they range over some finite sequence.

In the final section, we will briefly survey an entirely different class of categorical
models that have been proposed for functional interpretations, including Diller-Nahm
and nonstandard Dialectica; whose relation to the sheaf models, if any, is still obscure.

3.5 Herbrandised realisability topoi

In 1979, Hyland discovered the effective topos Eff [19] - the prime example of an inter-
esting elementary topos which is not a Grothendieck topos, its global sections functor
lacking a left adjoint. First order arithmetic in Eff matches Kleene’s recursive realis-
ability interpretation; and, in fact, it was the internal logic of Eff that suggested the
correct higher order generalisation of the latter, including the uniformity principle UP
that we mentioned in Chapter 1.

Hyland gave a direct construction; later, together with Johnstone and Pitts, he saw
that it could be profitably generalised [20]. The resulting procedure - the tripos-to-topos
construction -, and the new techniques developed around it, mostly by Pitts [51], have
been instrumental in the definition of many other non-Grothendieck topoi, which we
collectively call realisability topoi.

Since then, other, equivalent ways have been found to build realisability topoi, such
as exact completions [35]; but we will only describe the first, which is more perspicuous
in its logical underpinning. We will use [67] as a reference.

In the following definition, a Heyting prealgebra is a preorder whose poset reflection
is a Heyting algebra; there is a preorder-enriched category Heytpre of Heyting preal-
gebras, and morphism that preserve all the relevant structure. This is a subcategory of
Preord, the category of preorders and order-preserving maps.
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A pseudofunctor F : C → D is a functor “up to isomorphism”; that is, for all
objects C of C, F idC ' idFC , and, for all pairs of composable morphisms f : C → C ′,
g : C ′ → C ′′ in C, F (gf) ' FgFf . Similarly, a pseudo-natural transformation is defined
in the same way as a natural transformation, with equalities replaced by isomorphisms.

The definition of a tripos can be given relative to any category with finite products;
but since we will only actually use triposes over Set, we give a simplified definitions,
valid over cartesian closed categories.

Definition 3.41. Let C be a cartesian closed category. A tripos over C is a pseudo-
functor P : Cop → Heytpre, satisfying the following conditions.

1. For all morphisms f : C → D in C, Pf : PD → PC has both a left adjoint ∃f
and a right adjoint ∀f in Preord, and these satisfy the Beck-Chevalley condition:
for all pullback squares

E D

D′ C

h

k f

g

in Cop, it holds that ∀h Pk ' Pf ∀g.

2. There exist an object Σ of C, and an element σ ∈ PΣ, such that, for all objects C
of C, and all ϕ ∈ PC, there is a morphism [ϕ] : C → Σ such that ϕ ' P[ϕ](σ) in
PC.

Such a σ is called a generic predicate of P. Note that the Beck-Chevalley condition for
the right adjoints implies a similar condition for the left adjoints.

A transformation of triposes is a pseudo-natural transformation f : P → Q, where
P and Q are treated as pseudofunctors from Cop to Preord (that is, for all objects C
of C, fC is only required to be order-preserving).

Definition 3.42. A tripos P over Set is canonically presented if there exists a set Σ such
that, for all sets S, PS has ΣS as the underlying set, and, for all functions f : S → T ,
Pf is precomposition with f .

For a canonically presented tripos, one can take idΣ ∈ ΣΣ as the generic predicate. It
can be proved that every tripos over Set is “equivalent” to a canonically presented one
- meaning that they generate equivalent topoi through the tripos-to-topos construction
[20, Proposition 1.9]; and, in fact, we will only define canonically presented triposes.

Suppose E is an elementary topos. Then we can define a tripos over E by taking, for
all objects X of E , PX := Sub(X), or just the preorder of the monomorphisms into X;
and, as the generic predicate, the subobject classifier true : 1 � Ω.

The idea behind the tripos-to-topos construction is that this procedure can be re-
versed; that one can define, from a pair (C,P) of a category and a tripos over it, an
elementary topos where the structure of individual subobject lattices, and their mutual
relation through change of base functors, is induced by P.

Much like we interpreted a first order language L in a Heyting category H, it is
possible to interpret it in a pair (C,P) - except for equality, which we want to add at a
later stage; just proceed as in Section 3.1.1, replacing
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• for all objects C of C, the subobject lattices Sub(C) with the Heyting prealgebras
PC;

• for all morphisms f : C → D in C, the change of base functor f∗ : Sub(D) →
Sub(C) and its left and right adjoints, with Pf : PD → PC and its left and right
adjoints.

Given a sentence ϕ of L, we write
P |= ϕ

if the interpretation of ϕ in (C,P) is the top element of P1. As in the case of Heyting
categories, it can be proved that this interpretation is sound for intuitionistic first order
logic without equality.

In particular, if we take as L a language whose types are the objects of C, with their
obvious interpretation in (C,P) as themselves, we can use it to speak about properties
of the tripos itself, as we do in the following definition.

Definition 3.43 (Tripos-to-topos construction). Let (C,P) be a pair of a cartesian
closed category and a tripos over it. The category C[P] is described by the following
data.

• Objects are partial equivalence P-relations; that is, pairs (C,∼), where C is an
object of C, and ∼ is an element of P(C × C), such that

P |= ∀x, y : C (x ∼ y → y ∼ x) ,

P |= ∀x, y, z : C (x ∼ y ∧ y ∼ z → x ∼ z) .

∼ is called an equality predicate for C. We write E(x) := x ∼ x, and read it as “x
exists”.

• Morphisms f : (C,∼)→ (D,∼) are isomorphism classes of functional P-relations;
that is, elements F of P(C ×D) such that

P |= ∀x : C ∀y : D (F (x, y)→ E(x) ∧ E(y)) ,

P |= ∀x, x′ : C ∀y, y′ : D
(
F (x, y) ∧ x ∼ x′ ∧ y ∼ y′ → F (x′, y′)

)
,

P |= ∀x : C ∀y, y′ : D (F (x, y) ∧ F (x, y′)→ y ∼ y′) ,
P |= ∀x : C

(
E(x)→ ∃y : DF (x, y)

)
,

expressing the fact that F is, respectively, strict, relational, single-valued, and total.

Theorem 3.44. Let (C,P) be a pair of a cartesian closed category and a tripos over it.
Then C[P] is an elementary topos.

Proof. See [67, Theorem 2.2.1].

So a topos is obtained from a tripos by adding a notion of equality, and imposing
that morphisms respect it. The interpretation of logic in (C,P), with tripos semantics,
and in C[P], with Kripke-Joyal semantics, are still close enough that it is possible to
reduce the latter to the former; for which see [67, Section 2.3].

Moreover, we can define certain operations on triposes, which then lift to operations
on the generated topoi. Recall the following, fundamental definition.
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Definition 3.45. Let E , E ′ be elementary topoi. A geometric morphism f : E → E ′
consists of a pair of functors

f∗ : E ′ E : f∗ ,

such that f∗ a f∗, and f∗ preserves finite limits. The left adjoint f∗ is called inverse
image, and the right adjoint f∗ direct image.

We say that f is surjective if f∗ is faithful, and that f is an inclusion if f∗ is full and
faithful.

Geometric morphisms are the adequate notion of functor between elementary topoi,
when one is interested in the geometric aspects of the latter, i.e. topoi as a generalisation
of sheaves on a topological space; there is a vast theory surrounding them, for which we
can only refer to [24]. We now define a corresponding notion for triposes.

Definition 3.46. Let P,Q be triposes over C. A geometric morphism f : P → Q
consists of a pair of transformations of triposes

f∗ : Q P : f∗ ,

such that, for all objects C of C, f∗C a f∗C as maps between preorders, and f∗C
preserves finite meets.

We say that f is connected if f∗ is full and faithful, and that f is an inclusion if f∗
is full and faithful.

Theorem 3.47. Every geometric morphism f : P → Q of triposes over C can be lifted
to a geometric morphism f̄ : C[P]→ C[Q] of topoi.

Moreover, if f is connected, then f̄ is surjective, and if f is an inclusion of triposes,
then f̄ is an inclusion.

Proof. See [67, Theorem 2.5.8] for the lifting, [67, Theorem 2.5.11] for inclusions, and
[6, Theorem I.1.16] for connected geometric morphisms.

In [6], tripos theory was applied to the construction of topoi whose internal logic
would mirror the Dialectica interpretation, and its variants. We are interested, in par-
ticular, in the topos called DNm there, which was introduced in [58], and which most
closely resembles the Diller-Nahm interpretation. Its definition is based on Mod, the
modified realisability topos [66], whose construction we also provide.

All the next definitions could be given relative to any partial combinatory algebra
A [67, Chapter 1]; however, since we will not make use of this extra generality, we will
always refer to the partial combinatory algebra N of (appropriately numbered) partial
recursive functions, on which we assume that a coding of finite sequences has been fixed.

Notation. Given e, n ∈ N, we write en ↓ if the partial recursive function numbered
e is defined on n, and, in that case, we write en for the result of the application.

For all n0, . . . , nm ∈ N, we write 〈n0, . . . , nm〉 for the code of the finite sequence s
such that |s| = m+ 1, and sk = nk, for k = 0, . . . ,m.
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Given subsets A,B ⊆ N, we introduce standard abbreviations:

A⊗B := {〈a, b〉 | a ∈ A ∧ b ∈ B} ,
A⊕B := ({0} ⊗A) ∪ ({1} ⊗B) ,

A⇒ B := {e ∈ N | ∀a ∈ A (ea ↓ ∧ ea ∈ B)} ,
A∗ := {〈a0, . . . , am〉 | a0, . . . , am ∈ A} .

We also write SA for the set {n+ 1 |n ∈ A}.

Definition 3.48. The modified realisability tripos is a canonically presented triposMod
over Set, such that, for all sets S, ModS = ((ΣMod)

S ,≤S), where

ΣMod := {A = (Aa, Ap) ∈ PN× PN |Aa ⊆ Ap ∧ 0 ∈ Ap} .

We call the elements of Ap potential realisers, and the elements of Aa actual realisers.
The logical connectives onModS are defined pointwise: for all functions A,B : S →

ΣMod, and x ∈ S,

(A ∧B)(x) := (A(x)a ⊗B(x)a, A(x)p ⊗B(x)p) ,

(A ∨B)(x) := (A(x)a ⊕B(x)a, A(x)p ⊕B(x)p) ,

(A→ B)(x) :=
(
(A(x)a ⇒ B(x)a) ∩ (A(x)p ⇒ B(x)p), A(x)p ⇒ B(x)p

)
;

the preorder, on the other hand, is uniform:

A ≤S B if and only if ∃n ∈
⋂
x∈S

(A→ B)(x)a .

Informally, A ≤S B if and only if there is a number that works as an actual realiser of
(A→ B)(x), uniformly for all x ∈ S.

The top and bottom elements of each ModS are the constant functions with value
(N,N), and (∅,N), respectively.

For a function f : S → T , the left and right adjoint of Mod f can be defined, for
A ∈ModS, and y ∈ T , as

∃fA(y) :=
(

S
( ⋃
y=f(x)

A(x)a

)
, {0} ∪ S

( ⋃
y=f(x)

A(x)p

))
,

∀fA(y) :=
( ⋂
y=f(x)

({0} ⇒ A(x)a),
⋂

y=f(x)

({0} ⇒ A(x)p)
)
.

The modified realisability topos is then the topos Mod := Set[Mod].

To understand the definition of Mod, one should think of the pairs (Aa, Ap) in
ΣMod as representing formulae ∃n ∈ Ap Aa(n); then, implication is defined precisely as
implication in modified realisability: ∃n ∈ Ap Aa(n)→ ∃m ∈ Bp Ba(m) becomes

∃e ∈ (Ap ⇒ Bp)∀n ∈ Ap
(
en ↓ ∧ (Aa(n)→ Ba(en))

)
.

For the Diller-Nahm interpretation, we want to represent formulae of the form

∃n ∈ A+ ∀m ∈ A− Aa(n,m) ,
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and we want their implication to be Diller-Nahm implication; that alone suggests the
following definition.

From now on, we avoid explicitly defining the left and right adjoints to Pf , for a
tripos P and a function f : S → T ; it suffices to know that they exist.

Definition 3.49. The modified Diller-Nahm tripos is a canonically presented tripos
DNm over Set, such that, for all sets S, DNm S = ((ΣDNm)S ,≤S), where

ΣDNm := {A = (Aa, A+, A−) ∈ P (N× N)× PN× PN |Aa ⊆ (A+ ×A−) ∧ 0 ∈ A+} .

The logical connectives in DNm S are defined as follows: for all functions A,B : S →
ΣDNm ,

(A ∧B)(x)+ := A(x)+ ⊗B(x)+ , (A ∧B)(x)− := A(x)− ⊕B(x)− ,

(A ∧B)(x)a := {(〈n,m〉, 〈z, k〉) | (z = 0 ∧A(x)a(n, k)) ∨ (z = 1 ∧B(x)a(m, k))} ;

(A ∨B)(x)+ := A(x)+ ⊕B(x)+ , (A ∨B)(x)− := A(x)− ⊕B(x)− ,

(A ∨B)(x)a := {(〈z, n〉, 〈z′,m〉) | z = z′ → Cz(x)a(n,m)} , C0 ≡ A, C1 ≡ B ;

(A→ B)(x)+ := (A(x)+ ⇒ B(x)+)⊗ (A(x)+ ⊗B(x)− ⇒ A(x)∗−) ,

(A→ B)(x)− := A(x)+ ⊗B(x)− ,

(A→ B)(x)a := {(〈e+, e−〉, 〈n,m〉) | ∀k ∈ e−〈n,m〉 A(x)a(n, k)→ B(x)a(e+n,m)} .

Again, the preorder requires uniform realisers of implication: A ≤S B if and only if there
exists

n ∈
⋂
x∈S

(A→ B)(x)+

such that, for all x ∈ S, and for all m ∈ (A→ B)(x)−, (n,m) ∈ (A→ B)(x)a.
As top and bottom elements we can choose the constant functions with value (∅,N, ∅),

and (∅,N,N), respectively.
The modified Diller-Nahm topos is then the topos DNm := Set[DNm].

Proposition 3.50. There is a connected geometric morphism of triposes q : DNm →
Mod, hence a surjective geometric morphism of topoi q̄ : DNm →Mod.

Proof. Define a pair of functions q∗ : ΣDNm → ΣMod, and q∗ : ΣMod → ΣDNm , as
follows:

q∗ : (Aa, A+, A−) 7→ ({n ∈ A+ | ∀m ∈ A−Aa(n,m)}, A+) ,

q∗ : (Aa, Ap) 7→ (Aa × {0}, Ap, {0}) .

Let q : DNm →Mod be the geometric morphism of triposes induced by postcomposition
of functions with q∗ and q∗. It is easy to check that q is connected.

In fact, all geometric morphisms between canonically presented triposes P and Q are
induced by functions between the sets ΣP and ΣQ [6, Proposition I.1.17].

It is intuitive to think of the function q∗ as mapping a formula ∃n ∈ A+ ∀m ∈
A− Aa(n,m) to itself; only, the universal quantifier over A− is considered a part of
the “actual realisers” predicate in Mod, instead of a structural element as in DNm.
Similarly, q∗ introduces a vacuous quantifier, transforming ∃n ∈ Ap Aa(n) into

∃n ∈ Ap ∀m ∈ {0} Aa(n) .
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In [62] and [63], van den Berg introduced herbrandised versions of the modified
realisability, and modified Diller-Nahm triposes, with the intent of providing a semantic
counterpart to the Herbrand realisability interpretation [64] - a herbrandised variant of
modified realisability -, and, respectively, to nonstandard Dialectica; which, as we saw,
is basically herbrandised Diller-Nahm.

Definition 3.51. The Herbrand tripos is a canonically presented tripos Her over Set,
such that, for all sets S, Her S = ((ΣHer)

S ,≤S), where

ΣHer := {A = (Aa, Ap) ∈ PN× PN |Aa ⊆ A∗p , Aa upwards closed in A∗p} .

There is an isomorphism (A ⊕ B)∗ ' A∗ ⊗ B∗. The connectives are thus defined as
follows: for all functions A,B : S → ΣHer,

(A ∧B)(x) := (A(x)a ⊗B(x)a, A(x)p ⊕B(x)p) ,

(A ∨B)(x) := ({〈n,m〉 |n ∈ A(x)a ∨m ∈ B(x)a}, A(x)p ⊕B(x)p) ,

(A→ B)(x)p := A(x)∗p ⇒ B(x)∗p ,

(A→ B)(x)a := {s ∈ (A(x)∗p ⇒ B(x)∗p)
∗ | ∃n ∈ s

(
n ∈ (A(x)a ⇒ B(x)a)

)
} .

Notice that disjunction is treated in the same way as conjunction, compatibly with the
loss of its constructive meaning due to herbrandisation. The preorder is defined as in
Mod:

A ≤S B if and only if ∃n ∈
⋂
x∈S

(A→ B)(x)a .

The top and bottom element can be taken to be the constant functions with value
(N∗,N), and (∅,N), respectively.

The Herbrand topos is then the topos Her := Set[Her].

The nonstandard Dialectica tripos has the same relation to the Herbrand tripos, as
DNm has to Mod; and the same relation to DNm, as Her has to Mod.

Definition 3.52. The nonstandard Dialectica tripos is a canonically presented tripos
Dst over Set, such that, for all sets S, Dst S = ((ΣDst)

S ,≤S), where

ΣDst := {A = (Aa, A+, A−) ∈ P (N× N)× PN× PN |Aa ⊆ (A∗+ ×A−) ,

Aa upwards closed in A∗+} .

The logical connectives in Dst S are defined as follows: for all functions A,B : S → ΣDst,

(A ∧B)(x)+ := A(x)+ ⊕B(x)+ , (A ∧B)(x)− := A(x)− ⊕B(x)− ,

(A ∧B)(x)a := {(〈n,m〉, 〈z, k〉) | (z = 0 ∧A(x)a(n, k)) ∨ (z = 1 ∧B(x)a(m, k))} ;

(A ∨B)(x)+ := A(x)+ ⊕B(x)+ , (A ∨B)(x)− := A(x)− ⊗B(x)− ,

(A ∨B)(x)a := {(〈n,m〉, 〈j, k〉) |A(x)a(n, j) ∨B(x)a(m, k)} ;

(A→ B)(x)+ := (A(x)∗+ ⇒ B(x)∗+)⊕ (A(x)∗+ ⊗B(x)− ⇒ A(x)∗−) ,

(A→ B)(x)− := A(x)∗+ ⊗B(x)− ,

(A→ B)(x)a := {(〈e+, e−〉, 〈n,m〉) | ∀k ∈ e−[〈n,m〉] A(x)a(n, k)→ B(x)a(e+[n],m)} ;

where, for e ∈ (A→ B∗)∗, and n ∈ A, we define e[n] := e0n · . . . · e|e|−1n, in analogy with
the monotone sequence application we defined in Chapter 1.
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The preorder is defined much like in DNm: A ≤S B if and only if there exists

n ∈
⋂
x∈S

(A→ B)(x)∗+

such that, for all x ∈ S, and for all m ∈ (A → B)(x)−, (n,m) ∈ (A → B)(x)a. Finally,
we can choose the constant functions with value (∅, ∅, ∅), and (∅, ∅,N), as the top and
the bottom element, respectively.

The nonstandard Dialectica topos is then the topos Dst := Set[Dst].

Again, a good way to think of the elements of ΣHer is as formulae

∃s : A∗p Aa(s) ,

and of the elements of ΣDst as formulae

∃s : A∗+ ∀m : A− Aa(s,m) ,

with Aa upwards closed in s. We will use these analogies in the following proof, which
answers an open problem from [63].

Proposition 3.53. There is a pullback square

Dst DNm

Her Mod

d

p q

u

of geometric morphisms of triposes, such that d and u are inclusions, and p and q are
connected geometric morphisms.

Proof. Since all the triposes are canonically presented, such a square will arise from a
diagram

ΣDst ΣDNm

ΣHer ΣMod

d∗

p∗

d∗

q∗p∗

u∗

q∗

u∗

of functions, such that the direct images form a pullback diagram in Set.
We have already constructed the connected geometric morphism d : DNm →Mod.

For the others, instead of giving the direct definition in terms of elements of the Σ− sets,
we will describe their action on the associated formulae.

For u : Her → Mod, the direct image maps ∃s ∈ A∗p Aa(s) to itself; the inverse
image maps ∃n ∈ Ap Aa(n) to

∃s ∈ A∗p ∃n ∈ s Aa(n) .

Similarly, for d : Dst → DNm: the direct image maps ∃s ∈ A∗+ ∀m ∈ A− Aa(s,m) to
itself, while the inverse image maps ∃n ∈ A+ ∀m ∈ A− Aa(n,m) to

∃s ∈ A∗+ ∀m ∈ A− ∃n ∈ s Aa(n,m) .
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Finally, for p : Dst → Her, the direct image maps ∃s ∈ A∗+ ∀m ∈ A− Aa(s,m) to
itself, while the inverse image maps ∃s ∈ A∗p Aa(s) to

∃s ∈ A∗p ∀m ∈ {0} Aa(s) .

It is a simple verification that these are well defined, that the direct images form a
pullback diagram, and that the geometric morphisms induced by d and u are inclusions,
while the one induced by p is connected.

It follows that there is also a pullback square

Dst DNm

Her Mod

d

p q

u

of topoi and geometric morphisms, where p and q are surjective, and d and u are geo-
metric inclusions. Recently, a universal characterisation of the inclusion Her � Mod
has been found by Johnstone [25], the Herbrand topos being the Gleason cover [23] of
the modified realisability topos; yet no such characterisation is known for the inclusion
Dst � DNm, and, to date, the properties of both topoi remain quite obscure.

Nevertheless, our analysis of the Grothendieck topoi N and U raises a number of
suspicions. There, too, we had a geometric inclusion N � U , with inverse image the
sheafification functor.

Moreover, as discussed in [62], there are embeddings ∇ : Set � Mod, and ∇′ :
Set � Her, both right adjoint to the global sections functor of their target topos, with
the property that ∇ does not preserve any coproducts, while ∇′ preserves first order logic
(and, in particular, coproducts of a finite number of copies of 1), but not the natural
numbers object. Hence, ∇′N is a nonstandard model of arithmetic in Her.

Since p∗ and q∗ are full and faithful, composing with them, we obtain embeddings
q∗∇ : Set � DNm, and p∗∇′ : Set � Dst; and since they are inverse images of
geometric morphisms, hence preserve finite limits and all colimits, what we said about
∇, ∇′ is still true of q∗∇, p∗∇′. In particular, p∗∇′N is a nonstandard model of arithmetic
in Dst.

In the case of the filter topoi, by first embedding Set into FSet, with the identification
of a set S with the simple filter (S, {S}), and then by applying the appropriate Yoneda
embedding, we obtained functors y : Set � U and y′ : Set � N . And there, too, y′

preserved first order logic, but not the natural numbers object.
So naturally, we wonder: is there an analogue of Proposition 3.22 for the inclusion

Dst � DNm? Explicitly, is Dst the topos shj(DNm), where j is the smallest local
operator on DNm such that the monomorphism m : 2 � q∗∇2 is j-dense?

Furthermore, applying the filter construction to Set, and then taking K1-sheaves,
respectively K-sheaves, leads to topoi whose internal logic mirrors the (uniform) Diller-
Nahm, respectively the nonstandard Dialectica interpretation. In this case, we have
geometric morphisms from DNm and from Dst to Mod. Could it be that these topoi
arise from a similar construction, performed relative to the modified realisability topos,
instead of Set?

We had no time, or were unable to answer these questions; with them, we close this
chapter.



Conclusions

If we are to sum up, in brief, what we believe are the main conceptual achievements of
this thesis - those that an interested reader should not overlook - it may just come down
to the following.

1. The significance of U . The filter topos U doubles as a model of the logic of the
Diller-Nahm interpretation, and as a cue to its extension with uniform quantifiers -
the uniform Diller-Nahm interpretation. This was previously unknown, and might
lead to an improved understanding of the underlying, geometric structure of Diller-
Nahm logic.

2. A better view on herbrandisation. The comparison of N with U provided a cat-
egorical counterpart to herbrandisation, and allowed for a refined analysis of its
effects. This includes the re-contextualisation of NCR as a herbrandised uniformity
principle; on the contrary, the role of finite sequences in HGMPst appeared to be a
byproduct of their role in US∗, rather than the result of herbrandisation.

Singling these two out, of course, is the expression of a personal penchant: if you are more
into nonstandard arithmetic, for instance, the definition and examination of sequence
overspill and underspill may be more interesting.

Of equal, if not superior, importance are the new questions, that new results raise.
We want to conclude this thesis with a review of these, together with a few, more
speculative directions for potential future research.

Chapter 1. The main question left unsolved concerns the constructive accept-
ability of the principle TR∀∃, which would also imply the conservativity of HAC
over E-HAω∗.

Moreover, we would like to know how independent the principles OS∗ and US∗

are. We know that the Herbrand realisability interpretation vacuously accepts the
former, yet does not have a realiser for the latter [64]; but it would be desirable to
actually construct a model of intuitionistic nonstandard arithmetic with overspill,
and no underspill.

In addition, we did not address the question from [64] about the interpretation of
the general saturation principle SAT in a constructive setting; this, too, deserves
to be clarified.

Chapter 2. We defined a new functional interpretation, but ignore, so far, how
useful it is for applications. Its similarity to light Dialectica is encouraging; on
the other hand, the use of functional interpretations has been most successful in
program extraction from classical proofs, and we have not investigated yet how
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well uniform Diller-Nahm composes with negative translations, such as Kuroda’s
[30].

In light of the results of Chapter 3, Palmgren’s work on the topos N indicates that
the characteristic principles of nonstandard Dialectica lead to a useful calculus for
nonstandard analysis. We conjectured that the characteristic principles of uniform
Diller-Nahm may be a good axiomatisation of Lifschitz’s calculability arithmetic
[32]; is this correct, and could this also be a useful calculus by itself?

On a more speculative note, Oliva provided in [42] a unified view of the Dialectica,
Diller-Nahm, and modified realisability interpretations, through linear logic. Is
there an equivalent of herbrandisation in linear logic - connected, perhaps, to the
bang (!) modaliser - such that nonstandard Dialectica and Herbrand realisability,
too, would be amenable to such a treatment?

Chapter 3. We already put our main open questions at the end of the chapter:
they concern the relation between the inclusion N � U of the filter topoi, and the
inclusion Dst � DNm of the matching realisability topoi.

On a different subject, we pointed out that, for HACst and ACst to hold in N and in
U , respectively, we need some choice principles in the metatheory; which seems to
indicate that an intensional metatheory is preferable. However, the nonstandard
Dialectica and uniform Diller-Nahm interpretations were formulated in extensional
Heyting arithmetic; so there is seemingly a clash, which we would like to figure
out.

We hope that these, and related questions can be answered in future work, by us or by
you.
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you Tommaso, thank you Francesco, for always being there; we are different, we have
different lives, yet I feel there is some foundation to our friendship that never fails.
I trust it’ll keep being that way, even as we’re scattered farther and farther across
Europe. Thanks also to Laura, Luca, and other friends from Milan; whom I haven’t
heard regularly, but when it happened, it was always nice.

Thanks to my parents - in fact, thanks to everyone in my family - for their everlasting
support, and the independence that I learned from them.
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Thanks, Alessandra - so many names I can call you - for all the happiness.
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List of axioms and rules

AC, 29
ACst, 25
AC∨, 74
CSAT, 23
EOS, 14
EUS, 17
EXT, 5
EXT-R, 5
FANst, 75
HAC, 74
HACst, 25
HGMP, 31
HGMPst, 18
HIPst

∀ , 43
IA, 3
IA∗, 7
IAst, 10
IA∗st, 12
IA∨, 26
IPRc, 21
IPst
∀∨, 34

IP∀, 29
IPst
∀ , 34

IRst, 37
I, 14
LEM, 2
LLPOst, 16
LLPO0, 15
LPOst

0 , 75
LPO0, 75
MP′, 29
MPst, 18
MPst

0 , 19
MP0, 18
NCR, 25
NU, 25
OS, 12
OS∗, 14
OS∗∨, 37
OS0, 12
R, 18
SAT, 23
TP∃, 20
TP∀, 20
TR∃, 22

TR∀, 22
TR∃∨, 41
TR∀∃, 23
TR∀∨, 41
UP, 26
US, 16
US∗, 17
US∗∨, 38
US0, 16
contraction, 2
exchange, 2
expansion, 3
exportation, 3
ex falso quodlibet, 3
idealisation, 9
importation, 3
modus ponens, 3
standardisation, 9
syllogism, 3
transfer, 9
weakening, 2
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Index

λ-abstraction, 5
− for sequences, 8

arithmetic
− in all finite types, 3
Heyting −, see HA
Peano −, see PA

axiom of choice, 29, 74
external −, 25, 74
herbrandised −, 25, 74

Beck-Chevalley condition, 77
BHK interpretation, 2
binary tree, 75

calculable number, 32
category

coherent −, 50
Heyting −, 50
regular −, 50

characteristic morphism, 52
concatenation, 6

dense morphism, 61
Dialectica interpretation, 27

characterisation of −, 30
light −, 34
nonstandard −, 43

characterisation of −, 45
soundness of −, 44

soundness of −, 29
Diller-Nahm interpretation, 31

soundness of −, 31
uniform −, 33

characterisation of −, 39
soundness of −, 34

disjunction property, 23

E-HAω, 5
E-HAω

0 , 5
E-HAω∗, 6
E-HAω∗

∨ , 34
E-HAω∗

st , 10
E-HAω∗

st∨, 26
effective topos, 76
equality predicate, 78

ETCS, 52
exact completion, 76
excluded middle, 2
existence property, 23, 42

fan theorem, 75
filter, 58
− base, 58
− category, 58
proper −, 58

finite types, 3
forcing relation, 56

local character, 57
monotonicity, 57

formula
∨-free −, 26
internal −, 9, 64
purely universal −, 29
quantifier-free −, 5

functional relation, 78
functor

constant objects −, 61
global sections −, 61

generic predicate, 77
geometric morphism, 79
− of triposes, 79

connected −, 79
inclusion, 79

inclusion, 79
surjective −, 79

Grothendieck topology, 53
subcanonical −, 60

HA, 2
Herbrand
− topos, 82
− tripos, 82

herbrandisation, 25
Heyting prealgebra, 76
hyperfinite enumeration, 13

I-HAω, 5
idealisation, 9
independence of premise
− principle, 29, 72
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herbrandised −, 43, 72
− rule, 21

induction rule
external −, 37

induction schema, 3
− for sequences, 7
external −, 10, 69
− for sequences, 12

internal set theory, see IST, 32
IST, 9

Kripke-Joyal semantics, 56

local operator, 61

Markov’s principle, 18, 29
herbrandised generalised −, 18

Martin-Löf type theory, 52, 74
matching family, 54

amalgamation, 54
modified Diller-Nahm
− topos, 81
− tripos, 81

N-HAω, 4
negative translation, 28
nonstandard Dialectica
− topos, 83
− tripos, 82

overspill, 12
enumeration −, 14
sequence −, 14, 69

PA, 3
partial combinatory algebra, 79
partial equivalence relation, 78
power object, 52
presheaf, 53

representable −, 53
principle of omniscience

lesser limited −, 15
limited −, 75

proof mining, 28

quantifier
uniform −, 32

realisability, 2
Herbrand −, 82

modified −, 32
− topos, 80
− tripos, 80

realisation, 18
nonclassical −, 25, 71

saturation, 23
countable −, 23, 76

sequence
finite −, 5, 11
hyperfinite −, 11

sheaf, 54, 61
sheafification, 54
sieve, 53

closed −, 62
covering −, 53
indecomposable −, 63
pullback −, 62, 63

site, 53
standardisation, 9
standardness predicate, 10
subobject classifier, 52
successor axioms, 3

topos
elementary −, 50
Grothendieck −, 54
predicative −, 52
realisability −, 76

transfer, 8
− principle, 20
− rule, 22
− theorem, 67

tripos, 77
canonically presented −, 77

tuple, 28

underspill, 16
enumeration −, 17
sequence −, 17, 71

uniformity, 26
nonstandard −, 25, 71

upwards closed formula, 7

WE-HAω, 5

Yoneda embedding, 53
Yoneda lemma, 53
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