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Introduction

Fuzzy logic is the setting where the algebraic research presented in this thesis

takes place. It comes out from the need of dealing not only with absolute

concepts of truth and falsity, but also with their shades of meaning. In a

Platonic world of pure ideas, perfect and unchangeable, we certainly agree

that any sentence, any statement, either is completely true or it is completely

false. But when it comes to deal with reality, sometimes we may need to be

not that categorical.

For instance, if asked, we all surely consider ourselves able to distinguish

between a lake and a puddle. Now suppose that on the shore of our lake

stands a man, with a red cup in his hands. He fills his cup of water from

the lake, then he pours it away, over and over again. Presuming that he has

enough time to spend that way, at a certain point he will have turned the

lake into a puddle. But does this mean there is a cup of water whose single

spilling makes a lake become a puddle? Obviously not, thus there is a time

frame during which we may not be able to tell if we are staring at a lake or

at a puddle, and such sentences like “this is a lake” cannot be considered

neither true nor false, but possibly true “at some degree”.

Hence, at an accurate analysis, reality seems vague, reality seems fuzzy,

or better as we are going to discuss later on, even though reality may be

considered precise, our language and thus the way we relate to reality is

certainly vague. This kind of reasoning will result to affect logic as well, since

it affects concepts of truth and falseness, around which any logic is built.

The most well-known fuzzy logics result to be algebraizable in the sense
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of Blok and Pigozzi, hence the study of their equivalent algebraic semantics is

extremely interesting even from a logical point of view. In this thesis we will

concentrate our research on categorical equivalences, that are very important

in algebra and in algebraic logic in particular. The main achievement is a

categorical equivalence for product algebras. As far as we know, this is the

first equivalence involving the whole variety of product algebras.

The most important many-valued logics are  Lukasiewicz logic, product

logic, Gödel logic and Hájek’s logic BL. Their equivalent algebraic seman-

tics are constituted by the varieties of MV-algebras, of product algebras,

of Gödel algebras and of BL-algebras, respectively. Moreover, the vari-

eties of MV-algebras, product algebras and Gödel algebras are generated

by the standard algebras on [0, 1], that is to say respectively from the al-

gebra [0, 1]MV = ([0, 1], ·MV ,→MV ,max,min, 0, 1), by the algebra [0, 1]Π =

([0, 1], ·Π, →Π, max, min, 0, 1) and, finally, by the algebra [0, 1]G = ([0, 1], ·G,
→G,max,min, 0, 1).

The early ancestor between the theorems of categorical equivalence in

algebraic logic is certainly the Stone Theorem, which links Boolean algebras

to topological spaces. Exactly, Stone’s theorem states that there is a duality

between the category of Boolean algebras and the category of Stone spaces,

i.e. every boolean algebra A is isomorphic to its Stone space S(A), and given

any homomorphism from a Boolean algebra A to a Boolean algebra B it

corresponds in a natural way to a continuous function from S(B) to S(A).

For MV-algebras, a famous theorem, due to Daniele Mundici [Mu], shows

the existence of an equivalence between the category of MV-algebras, with

morphisms the homomorphisms, and the category of lattice ordered abelian

groups with a strong order unit, with morphisms the unit preserving homo-

morphisms. So far, as regards to algebra of fuzzy logic, only for the category

of MV-algebras a satisfactory categorical equivalence has been shown. To

the best of our knowledge, no equivalence is known for the whole category of

BL-algebras, or even for the category of all Gödel algebras.

For product algebras, the best result has been shown in [CT], for those
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special product algebras which are obtained from a cancellative hoop C

by the adding of a bottom element 0 (in the sequel, the product algebra

obtained in this way will be denoted by 2⊕C). In [CT], the full subcategory

of the category of product algebras whose objects are of the form 2 ⊕ C

shown above is proved to be equivalent to the category of lattice ordered

abelian groups. Note that lattice ordered abelian groups are categorically

equivalent to cancellative hoops (the latter being essentially the negative

cones of the former), and hence, the obvious equivalence between cancellative

hoops and product algebras of the form 2⊕C, C a cancellative hoop, yields

an equivalence with lattice ordered abelian groups as well.

But the construction of [CT] does not work for product algebras in general,

as there are product algebras which are not of the form 2⊕C, for instance,

any direct product of two non-trivial product algebras. Thus in order to

obtain a categorical equivalence for the whole variety of product algebras, we

need a more complex category.

The objects of the category T we are going to investigate and which will

turn out to be equivalent to the one of product algebras, are triples consisting

of: a Boolean algebra B, representing the maximum Boolean subalgebra of

the given product algebra; a cancellative hoop C, representing its maximum

cancellative subhoop; and an external operation ∨c from B×C into C, where

for all b ∈ B and c ∈ C, b ∨e c represents the join (in the product algebra) of

b and c and satisfies some properties which will be specified later.

Moreover, the algebras B and C alone do not determine a unique product

algebra, that is, in general there can be many non-isomorphic product alge-

bras whose maximum boolean subalgebra and whose maximum cancellative

subhoop are isomorphic. What makes the product algebra unique is the

external join ∨e.
The morphisms from an object (B,C,∨e) into another object (B′,C′,∨′e),

of T , are pairs (h, k), where h is a homomorphism from B into B′, k is a

homomorphism from C into C, and the condition k(b ∨e c) = h(b) ∨′e k(c) is

satisfied for all b ∈ B ad c ∈ C.
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We then define a functor Φ from the category P of product algebras

into the category T of product triplets that to each product algebra P asso-

ciates the triplet (B(P),C(P),∨e), where B(P) and C(P) are the maximum

boolean subalgebra and the maximum cancellative subhoop of P, and, for

b ∈ B(P ) and c ∈ C(P ), b ∨e c is the join of b and c in P. Moreover, to each

homomorphism f from a product algebra P into a product algebra P′, Φ

associates the pair (h, k), where h and k are the restrictions of f to B(P)

and to C(P), respectively.

The main result of this thesis states that the functor Φ has an adjoint

Φ−1 and that the pair (Φ,Φ−1) constitutes an equivalence of categories.

Since cancellative hoops are categorically equivalent to lattice ordered

abelian groups, we might obtain a similar result with cancellative hoops

replaced by the better known lattice ordered abelian groups.

Moreover, if P has the form 2 ⊕ C, then B(P) = 2, C(P) = C, and

b ∨e c =

{
c if b = 0

1 if b = 1
. Thus in this case Φ(P) only depends on C. Hence,

one can easily obtain an equivalence with the category of cancellative hoops,

and finally with the category of lattice ordered abelian groups. In other words,

Cignoli and Torrens categorical equivalence is a special case of our result.

This thesis is organized as follows: in the first chapter we present fuzzy

logic, the idea from which it arises, and we show the axiomatic system of the

main propositional fuzzy logics.

In the second chapter we give some algebraic preliminaries useful for

stating the following results, describing the algebraic semantics of the logics

presented in the first chapter.

In the third chapter, we present a proof of the equivalence between the

category of lattice ordered abelian groups and the category of cancellative

hoops, and then we also prove the equivalence between the category of MV-

algebras and the category of cancellative hoops with strong unit. We will

hence obtain indirectly Mundici’s equivalence.

In the final chapter, we present the original research of this thesis. We first
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prove that every product algebra P has a greatest boolean subalgebra, B(P)

and a greatest cancellative subhoop, C(P), but these two algebras do not

determine P up to isomorphism. Hence we investigate the properties of the

restriction ∨e of join to B(P )×C(P ), we introduce the category T of product

triplets, and we define a functor Φ from the category P of product algebras

into T . We then introduce an adjoint, Φ−1, of Φ, and finally we prove that

the pair (Φ,Φ−1) constitutes an equivalence of categories. We also briefly

discuss some additional problems, like the restriction of the equivalence to

some full subcategories of the category P of product algebras, and the notion

corresponding, via the equivalence Φ, to the notion of filter of a product

algebra.
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Chapter 1

Fuzzy Logic

Logic studies reasoning. It deals with propositions, and the relation of

consequence among them. Different logics diverge in their definition of

sentences and notions of consequence. But the idea around which every

logic evolves is the concept of truth, and the way it spreads through the

propositions.

Classical logic, which is our starting point, considers truth as an absolute.

It is a categorical and precise judgement, any proposition either is true or

it is false. But is this kind of conception reasonable outside a Platonic

hyperuranion? It will be our aim to show how, when we deal with reality, it

is difficult to talk about such things as absolute truth or absolute falsity.

1.1 Vagueness: why fuzzy logic?

As Bertrand Russell states in an article published in 1923 [Ru], the problem

is that even though reality is precise, things simply are what they are, and

they either have some property or they do not, language is vague. Let us

think again about our man with his red cup, and let us concentrate about a

single word: “red”. Since colours form a continuum, there are some shades

of colour concerning which we shall be in doubt whether to call them red or

not, and we are not able to tell in which specific shade of the spectrum red

9
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gives way to other colours. In order to have another example, suppose that

our poor man went bald. It is presumed that at first he was not bald, then

he starts losing his hairs one by one, and in the end he is bald. Hence there

must have been one hair the loss of which turned him into a bald man. But

this is absurd, since baldness is a vague concept. Some men are certainly

bald, some other men surely are not, but there are other about whom we

cannot tell whether they are bald or not. As Russell himself observes, the

law of excluded middle is true when precise symbols are employed, but it is

not true when symbols are vague, as, in fact, all symbols are.

We may think that this kind of argument does not really affect logic, since

connectives seem to have a precise meaning. Yet the trouble comes with

the notions of true and false. Again, we can define something as completely

true or completely false only if we are talking about something which is

itself a precise notion, or a precise symbol with a precisely defined property,

which we already observed does not always happen. Therefore even in logical

propositions we may have a certain degree of vagueness.

We may be able to imagine a clear meaning for such words as “or” and

“not”. But we can imagine what they would mean if only our symbolism were

clear. All traditional logic assumes that precise symbols are being employed,

taking for granted the accuracy of our knowledge, leaving aside all those

propositions which cannot be treated with absolute concepts of true and false,

just like the sentences “this cup is red” or “that man is bald”. All those

sentences will indeed be true “to some degree”.

From this kind of need, from the necessity of dealing with statements and

concepts that are not simply either completely true or completely false, arises

what we are going to call fuzzy logic.

1.2 What does fuzzy logic mean?

As suggested, fuzziness is an attempt to express, or relate to vagueness, and

fuzzy propositions may be true to some degree. In particular, instead of taking
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as truth-values only 0 and 1, corresponding respectively to “absolute falseness”

and “absolute truth”, fuzzy logic choses to use the whole real interval [0, 1].

Thus we may have propositions with a truth-value of 0, 7. For atomically

propositions, like the one already cited “that man is bald”, it simply means

that in a scale from 0 to 1, you think that the man in question is bald 0, 7.

We are going to deal with truth-functional propositional many-valued

logics, which means that the truth degree of a compound proposition is

obtained by the truth degrees of the compounds, as it happens in classical

logic. Precisely, for instance, every binary connective c has a truth function

fc : [0, 1]2 → [0, 1] and for any pair of formulas ϕ, ψ the truth degree of the

compound formula c(ϕ, ψ) is determined by the truth degrees of ϕ and ψ

following specific rules that we are going to show, that have to respect the

intuition beneath each connective. We are going to follow [Ha].

We start with the requirements on a truth function which interpretates

conjunction. The idea is a big truth-degree of ϕ&ψ should indicate that both

the truth value of ϕ and the truth value of ψ are big. That is, the function

should be non-decreasing in both arguments and limited by 0 and 1. We have

the following definition:

Definition 1.2.1. A t-norm is a binary operation ∗ on [0, 1] satisfying the

following conditions:

i) ∗ is commutative and associative, i.e. for all x, y, z ∈ [0, 1]

x ∗ y = y ∗ x,

(x ∗ y) ∗ z = x ∗ (y ∗ z).

ii) ∗ is non-decreasing in both arguments:

x1 ≤ x2 implies x1 ∗ y ≤ x2 ∗ y,

y1 ≤ y2 implies x ∗ y1 ≤ x ∗ y2.

iii) 1 ∗ x = x and 0 ∗ x = 0 for all x ∈ [0, 1].
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∗ is a continuous t-norm if it is a t-norm and is a continuous mapping of

[0, 1]2 into [0, 1].

Definition 1.2.2. The following are the most important continous t-norms:

1.  Lukasiewicz t-norm: x ∗ y = max(0, x+ y − 1),

2. Gödel t-norm: x ∗ y = min(x, y),

3. Product t-norm: x ∗ y = x · y (product of reals).

We now deal with implication. In classical logic, ϕ→ ψ is true if the truth

value of ϕ is less or equal to the truth value of ψ. In order to extend this

idea, we are going to consider that a big truth value of ϕ→ ψ means that the

truth value of ϕ is ”not too bigger” of the truth value of ψ. Hence a truth

function x⇒ y should be non-increasing in x and non-decreasing in y. It also

have to respect the idea of modus ponens. Thus from (a lower bound of) the

truth degree x of ϕ and (a lower bound of) the truth degree x⇒ y of ϕ→ ψ

we should be able to get a lower bound of the truth degree y of ψ. Moreover,

the operation computing this lower bound should be non-decreasing in both

arguments.

These considerations lead to the following request:

if a ≤ x and b ≤ x⇒ y then a ∗ b ≤ y.

Hence,

if z ≤ x⇒ y then x ∗ z ≤ y.

In order to make this rule more powerful, and define x⇒ y as big as possible,

we also require the converse, hence we have:

x ∗ z ≤ y iff z ≤ x⇒ y (1.2.1)

i.e. x⇒ y is the maximum z satisfying x ∗ z ≤ y.

Lemma 1.2.3. Let ∗ be a continous t-norm. Then there is a unique operation

x⇒ y satisfying for all x, y, z ∈ [0, 1] the condition 1.2.1
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Proof. For each x, y ∈ [0, 1], let x⇒ y = sup{z : x ∗ z ≤ y}. Let, for a fixed

z f(x) = x ∗ z. f is continous and non-decreasing, hence it commutes with

sup, thus:

x ∗ x⇒ y = x ∗ sup{z : x ∗ z ≤ y} = sup{x ∗ z : x ∗ z ≤ y} ≤ y.

Hence x⇒ y = max{z : x ∗ z ≤ y}, and uniqueness is trivial.

Definition 1.2.4. The operation x⇒ y from 1.2.3 is called residuum of the

t-norm.

Theorem 1.2.5. The residua of the continous t-norms defined in 1.2.2 are

the following:

x⇒ y = 1 if x ≤ y,

otherwise if x > y

1.  Lukasiewicz implication: x⇒ y = 1− x+ y,

2. Gödel implication: x⇒ y = y,

3. Goguen implication: x⇒ y = y/x.

Proof. Assume x > y.

1. x ∗ z ≤ y iff x+ z − 1 ≤ y iff z ≤ 1− x+ y. Thus 1− x+ y = max{z :

x ∗ z ≤ y}.

2. x ∗ z ≤ y iff min(x, z) ≤ y. Thus y = max{z : x ∗ z ≤ y}.

3. Similarly, x ∗ z ≤ y iff x · z ≤ y, and hence y/x = max{z : x ∗ z ≤ y},
since x > 0.

Remark 1.2.6.  Lukasiewicz implication is continous, while Gödel and Goguen

are not, but the residuum of every continous t-norm is left continous in the

first variable and right continous in the second variable.
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Starting from the residuum, we can also define the truth function for

negation.

Definition 1.2.7. The operation of precomplement is defined by:

−x = x⇒ 0.

It easily follows that the precomplemets of the three continous t-norms

are:

1. Lukasiewicz negation: −x = 1− x,

2. Gödel negation: −0 = 1, for x > 0,−x = 0,

3. Goguen negation: −0 = 1, for x > 0,−x = 0.

Remark 1.2.8. The three t-norms presented are fundamental continous

t-norms, in the sense that each continous t-norm is a combination of them

(for details, see for instance [Ha]).

1.3 Many-valued propositional calculi

When we fix a continous t-norm, we fix a propositional calculus, whose set of

truth-values is [0, 1], where ∗ is taken as the truth function of conjunction &

and his residuum ⇒ is the truth function of implication.

Definition 1.3.1. The propositional calculus PC* given by ∗ has proposi-

tional variables p1, p2, . . . , connectives &,→, and the truth constants 0 for

0.

Formulas are defined inductively: each propositional variable and 0 are

formulas, and if ϕ and ψ are formulas then ϕ&ψ and ϕ→ ψ are formulas.

We can also define further connectives:

1. ϕ ∧ ψ = ϕ&(ϕ→ ψ)

2. ϕ ∨ ψ = ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ)
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3. ¬ϕ = ϕ→ 0

4. ϕ↔ ψ = (ϕ→ ψ)&(ψ → ϕ)

Definition 1.3.2. An evaluation of propositional variables is a mapping e

assigning to each propositional variable p its truth value e(p) ∈ [0, 1]. This

extends to the evaluation of formulas as follows:

e(0) = 0,

e(ϕ→ ψ) = e(ϕ)⇒ e(ψ),

e(ϕ&ψ) = e(ϕ) ∗ e(ψ).

A formula of PC* is a 1-tautology if e(ϕ) = 1 for each evaluation e.

1.3.1 Basic Logic

Now we are going to give the axioms of the logic that is a common base of all

the logic PC*, that hence can be shown to be 1-tautologies of every PC* (for

a proof, see for instance [Ha], Lemma 2.2.6).

Definition 1.3.3. The following are the axioms of Basic Logic BL:

BL1. (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

BL2. (ϕ&ψ)→ ϕ

BL3. (ϕ&ψ)→ (ψ&ϕ)

BL4. (ϕ&(ϕ→ ψ))→ (ψ&(ψ → ϕ))

BL5. (ϕ→ (ψ → χ))→ ((ϕ&ψ)→ χ)

BL6. ((ϕ&ψ)→ χ)→ (ϕ→ (ψ → χ))

BL7. ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)

BL8. 0→ ϕ
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The deduction rule is modus ponens.

Remark 1.3.4. BL1. is transitivity of implication, BL2. says that & con-

junction implies its first element. BL3. is commutativity of &, while BL4. is

commutativity of ∧. BL5. expresses residuation, and BL6. expresses the idea

of proof by cases. Finally, BL7. translates the “ex falso quodlibet” rule.

BL is proved to be complete with respect to BL algebras, which will be

defined in the following chapter.

1.3.2  Lukasiewicz logic and Gödel logic

As we have observed, BL represents a basis for the other many-valued logics

we presented. Hence, their axiomatization can be obtained as an extension of

BL.

Definition 1.3.5. We define  Lukasiewicz propositional logic,  L, the theory

given by the axioms of BL and the axiom (¬¬) of double negation:

(¬¬) ¬¬ϕ→ ϕ.

A completeness theorem is given with respect to MV-algebras, which again

will be presented later.

Definition 1.3.6. We shall call Gödel propositional logic, G, the extension

of BL by the axiom:

(G) ϕ→ (ϕ&ϕ)

stating the idempotence of &.

In Gödel logic, the two conjunctions coincide, and it also results to prove

all axioms of intuitionistic logic [Ha]. G is complete with respect to Gödel

algebras, that as we will see, are Heyting algebras satisfying prelinearity.

We now present the many-valued logic whose algebraic semantic we are

going to investigate in this thesis.
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1.3.3 Product logic

Product logic, that we are going to denote by Π, is the propositional logic

given by product t-norm: x ∗ y = x · y, where · is the product of reals.

Recall that the corresponding implication is Goguen: if x > y, x⇒ y = y/x,

otherwise x ⇒ y = 1 if x ≤ y, and the corresponding negation is Gödel

negation: −0 = 1, for x > 0,−x = 0.

From now on, we are going to denote Goguen implication by → and

product conjunction by �.

Definition 1.3.7. The axioms of Π are those of BL plus:

(Π1) ¬¬χ→ ((ϕ� χ→ ψ � χ)→ (ϕ→ ψ)),

(Π2) ϕ ∧ ¬ϕ→ 0.

As shown in [Ha],  Lukasiewicz logic has a faithful interpretation in Π,

the idea is that  Lukasiewicz conjunction on [0, 1] is isomorphic to restricted

product max(a, x · y) on [0, 1] for each 0 < a < 1. In next chapter, we are

going to present product algebras, which constitutes an equivalent algebraic

semantic of Π, in the sense of [BP].



Chapter 2

Algebraic semantics of fuzzy

logics

For all concepts of Universal Algebra we refer to [BS]. For product algebras

we refer to [Ha], and to [CHN]. For MV-algebras, we also refer to [CDM].

From now on, we use boldface capital letters to denote algebras and plain

text capital letters to denote their universe.

The algebras we are interested in, can be presented both in terms of

residuated lattices and in terms of hoops, and we are going to show the two

different constructions.

2.1 CIPRLs

Definition 2.1.1. A commutative, integral and pointed residuated lattice

(abbreviated as CIPRL) is an algebra L = (L, ·,→,∨,∧, 0, 1) such that:

(1) (L, ·, 1) is a commutative monoid.

(2) (L,∨,∧) is a lattice with bottom 0 and top 1 and

(3) → is a binary operation such that for all x, y, z ∈ L the residuation

property holds: x · y ≤ z iff x ≤ y → z.

18
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Definition 2.1.2. A BL-algebra [Ha] is a CIPRL satisfying the divisibility

condition

(div) x · (x→ y) = x ∧ y

and the prelinearity condition

(prel) (x→ y) ∨ (y → x) = 1.

A product algebra is a BL-algebra satisfying

(Π) ¬x ∨ ((x→ x · y)→ y) = 1.

A Gödel-algebra is a BL-algebra satisfying

(contr) x · x = x.

A Wajsberg algebra is a BL-algebra satisfying

(dn) ¬¬x = x,

where ¬x is an abbreviation for x→ 0.

Wajsberg algebras are term equivalent to MV-algebras, that is, algebras

(A,⊕,¬, 0) whose operations satisfy:

MV1. x⊕ (y ⊕ z) = (x⊕ y)⊕ z

MV2. x⊕ y = y ⊕ x

MV3. x⊕ 0 = x

MV4. ¬¬x = x

MV5. x⊕ ¬0 = ¬0

MV6. ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.

The interpretations are respectively:

¬x = x→ 0,

x⊕ y = ¬x→ y,
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and:

x · y = ¬(¬x⊕ ¬y),

x→ y = ¬x⊕ y.

Hence, in the sequel we do not distinguish between MV-algebras and Wajsberg

algebras.

As we have already said, BL-algebras, product algebras, MV-algebras and

Gödel algebras constitute the algebraic semantics for Hájek’s logic BL, for

product logic, for  Lukasiewicz logic and for the Gödel logic. CIPRLs instead

constitute the algebraic semantics for FLew, the substructural logic consisting

of Full Lambek calculus with weakening and exchange, see [GJKO].

In a BL-algebra, and hence in a product (resp., MV, Gödel) algebra, we

can also define meet and join in terms of · and → by:

x ∧ y = x · (x→ y) (2.1.1)

x ∨ y = ((x→ y)→ y) ∧ ((y → x)→ x) (2.1.2)

2.1.1 Varieties

The classes of BL-algebras, of MV-algebras (or Wajsberg algebras), of product

algebras and of Gödel algebras clearly form a variety, which will be denoted

by BL, byMV , by P , and by G, respectively. Since any variety determines a

category whose objects are the algebras in the variety and whose morphisms

are the homomorphisms, we will use the same notation for a variety V and

for the corresponding category.

It is well known (see [Ha] and [CHN, Thm 2.4.2]) that if A is a member

of any subvariety, V , of BL, then A is a subdirect product of totally ordered

algebras in V (also called V-chains in the sequel).

Moreover the varieties MV , P and G are respectively generated by:

[0, 1]MV = ([0, 1], ·MV ,→MV ,max,min, 0, 1)
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where x ·MV y = max {x+ y − 1, 0} and x →MV y = min {1− x+ y, 1},
while the MV-operations in [0, 1]MV are x⊕y = min{x+y, 1} and ¬x = 1−x;

[0, 1]Π = ([0, 1], ·Π,→Π,max,min, 0, 1)

where ·Π is ordinary product on [0, 1], x →Π y = 1 if x ≤ y, and x →Π y =

y/x otherwise ;

[0, 1]G = ([0, 1], ·G,→G,max,min, 0, 1)

where x ·G y = min {x, y} , and x→G y = 1 if x ≤ y and otherwise

x→G y = y.

Hence, every quasiequation which is true in [0, 1]MV (in [0, 1]Π, in [0, 1]G

respectively) is true in every Wajsberg algebra (resp., product algebra, Gödel

algebra).

2.2 Hoops

Since lattice operations in a BL-algebra can be recovered from the operations

· and →, and since in some contexts the bottom element is not essential, the

subreducts of BL-algebras and of subvarieties of BL in a language with ·, →
and 1 only, play an important role. Hence, we briefly discuss the variety of

hoops and some of its subvarieties.

Definition 2.2.1. (cf [BF]). A hoop is a structure (A, ·,→, 1) such that

(A, ·, 1) is a commutative monoid, and → is a binary operation such that

x→ x = 1, x→ (y → z) = (x · y)→ z and x · (x→ y) = y · (y → x).

Definition 2.2.2. A hoop is said to be basic iff it satisfies the identity

(lin) (x→ y)→ z ≤ ((y → x)→ z)→ z.

A Wajsberg hoop is a hoop satisfying:

(W) (x→ y)→ y = (y → x)→ x.
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A cancellative hoop is a hoop satisfying:

(canc) x→ (x · y) = y.

The next proposition collects some well-known results proved in [AFM],

in [BF] and in [Bo].

Proposition 2.2.3. (1) Basic hoops are precisely the subreducts of BL-

algebras in the language {·,→, 1} of hoops.

(2) Wajsberg hoops are precisely the subreducts of Wajsberg algebras in the

language of hoops.

(3) A hoop is a partially ordered, commutative, residuated and integral

monoid which is naturally ordered, i.e. x ≤ y if ∃x : x = z · y.

Sometimes it is convenient to work with what we call dual hoops.

Definition 2.2.4. A dual hoop ([BF]) is an algebra A = (A,+,−, 0) such

that (A,+, 0,≤) is a partially ordered commutative monoid with identity 0,

which is the least element of A. and for all x, y ∈ A, x − y is the smallest

element of the set {z : x ≤ z + y}.
While in hoops the partial order satisfies x ≤ y iff x = z · y for some z ∈ A

(z = x→ y), the partial order in dual hoops satisfies: x ≤ y iff y = z + x, for

some z ∈ A.

If A = (A, ·,→, 1) is a hoop then Ad = (A,+,−0) is a dual hoop, where

x + y = x · y, x− y = y → x and 0 = 1. Conversely, if A = (A,+,−0) is a

dual hoop then Ad = (A, ·,→, 1) is a hoop, where x ·y = x+y, x→ y = y−x
and 1 = 0. The classes of hoops and dual hoops are therefore term equivalent.

It is also possible to give a description of cancellative hoops in terms of

lattice ordered abelian groups.

Definition 2.2.5. A lattice-ordered abelian group is an algebra (G,+,−,∨,∧, 0)

where (G,+,−, 0) is an abelian group, (G,∨,∧) is a lattice, and the equation

x+ (y ∨ z) = (x+ y) ∨ (x+ z) holds.
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The negative cone G− of a lattice ordered abelian group G is the algebra

whose domain is {g ∈ G : g ∨ 0 = 0} (the set of negative elements of G),

equipped with the constant 0 and with the operations x · y = x + y and

x→ y = (y − x) ∧ 0.

Cancellative hoops are precisely the negative cones of lattice ordered

abelian groups. Moreover, there is a categorical equivalence between the

category of lattice ordered abelian groups and the category of cancellative

hoops, as we are going to see in the next chapter.

We are going to present a description of a special class of product algebras,

including the class of product chains.

Definition 2.2.6. Given a basic hoop H, by 2⊕H we denote the structure

whose universe is H ∪ {0}, where 0 /∈ H, and whose operations ·′ and →′ are

defined as follows:

x ·′ y =

{
x · y if x, y ∈ H

0 otherwise
x→′ y =


x→ y if x, y ∈ H

1 if x = 0

0 if x ∈ H and y = 0,

where · and → denote the operations of H and ∧ and ∨ are defined in terms

of · and → as usual.

The construction 2 ⊕C is the ordinal sum of the two element boolean

algebra 2 and the cancellative hoop C. We refer the reader to [BF] for the

general definition and for an investigation of ordinal sums.

Proposition 2.2.7. (1) If C is a cancellative hoop, then the algebra 2⊕C,

is a product algebra.

(2) Every product chain has the form 2 ⊕ C, for some (possibly trivial)

cancellative hoop C.

Proof. For (1), it suffices to prove that the equation (Π) defining product

algebras holds in 2⊕C. If x = 0, then ¬x = 1 and (Π) holds. If x, y 6= 0, then
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x→ x · y = y and (Π) holds. Finally, if x 6= 0 and y = 0, then x→ x · y = 0

and again (Π) holds.

As regards to (2), if A is a product chain and x 6= 0, then ¬x < 1, and

by equation (Π) it must be x→ x · y ≤ y for all y. Hence, taking y = 0, we

obtain ¬x = x → 0 = x → x · 0 = 0. This implies that x → 0 = 0 for all

x > 0. Clearly, for all z, the equation z · 0 = 0 · z = 0 holds in any BL-algebra,

and hence it holds in A. Moreover, if x, y 6= 0, then by (Π) we obtain that

x → x · y = y, that is, all non-zero elements satisfy the equation defining

cancellative hoops. This settles the claim.

Notation 2.2.8. From now on, even without explicit mention, P will denote

an arbitrary product algebra, (Pi : i ∈ I) denotes an indexed family of totally

ordered product algebras such that P is a subdirect product of (Pi : i ∈ I).

Moreover, according to Proposition 2.2.7, (Ci : i ∈ I) will denote a family

of totally ordered cancellative hoops such that for all i ∈ I, Pi = 2 ⊕ Ci.

Finally, if x denotes any element of P, then for all i ∈ I, xi will denote its

ist coordinate. Hence, every x ∈ P can be written as x = (xi : i ∈ I), with

xi ∈ Pi. We shall write, indicating with ↪→ the subdirect immersion,

P ↪→
∏
i∈I

Pi and for all i ∈ I Pi = 2⊕Ci. (2.2.1)

Note that since there is a monomorphism from P to
∏

i∈I Pi, it suffices to

show that an identity is valid for each Pi to conclude that it is valid in P.

2.2.1 Filters

We conclude with the concept of filter. A filter of a CIPRL or of a hoop A is

a subset F of A such that 1 ∈ F and if a, a→ b ∈ F , then b ∈ F . A filter is

said to be trivial if its only element is 1, and proper if it does not coincide

with the whole domain A of A. A filter is maximal if it is proper and it is

maximal wrt inclusion among all proper filters. The co-radical, Rad∗(A) of a

CIPRL or of a hoop A, is the intersection of all its maximal filters. Filters

stand in bijection with congruences: given a congruence θ on a CIPRL or of
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a hoop A, the set Fθ = {x ∈ A : (x, 1) ∈ θ} is a filter of A, and given a filter

F on A, the set θF = {(x, y) : x↔ y ∈ F} is a congruence on A. Moreover,

the maps θ 7→ Fθ and F 7→ θF are mutually inverse isomorphisms between

the filter lattice and the congruence lattice on A.



Chapter 3

Some categorical equivalences

in algebraic logic

In this chapter we outline some well-known categorical equivalences in alge-

braic logic. The first result in this field is Stone Representation theorem for

boolean algebras, published in 1936 [St].

3.1 Stone’s theorem

Stone associates to every boolean algebra B a topological space we shall

indicate with S(B), called its Stone space. The points in S(B) are the

ultrafilters on B, or equivalently the homomorphisms from B to the two-

elements boolean algebra. The closed sets which generate the topology on

S(B) are all sets of the form {x ∈ S(B) : b ∈ x} where b is an element of

B. For every boolean algebra B, S(B) is a compact totally disconnected

Hausdorff space: such spaces are called Stone spaces. Conversely, given any

topological space X, the collection of the subsets of X that are clopen (both

closed and open) is a boolean algebra.

A simple version of Stone’s representation theorem states that every

boolean algebra B is isomorphic to the algebra of clopen subsets of its Stone

space S(B). The isomorphism maps an element b ∈ B to the set of all

26
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ultrafilters that contain b. This is a clopen set because of the choice of

topology on S(B) and since B is a boolean algebra.

The result may be generalized to a categorical duality (equivalence with

the dual) between the category of boolean algebras with morphisms the homo-

morphisms and the category of Stone space with morphisms the continuous

functions. This duality means that every Boolean algebra is isomorphic to its

Stone space, and also each homomorphism from a boolean algebra A to a

boolean algebra B corresponds to a continuous function from S(B) to S(A).

In other words, there is a contravariant functor that gives an equivalence

between the two categories.

The theorem is a special case of Stone duality, a more general framework for

dualities between topological spaces and partially ordered sets. In particular,

a well-known extension of Stone’s theorem is the one obtained for distributive

lattices, that turn out to be equivalent to coherent spaces and Priestley spaces,

which are ordered topological spaces, compact and totally disconnected. This

representation of distributive lattices via ordered topologies is known as

Priestley’s representation theorem for distributive lattices [Pr].

As already pointed out, we are especially interested in many-valued logics,

and for instance it is possible to obtain a similar result also for the category

of MV algebras, which are distributive lattices. Indeed, a so called Stone-

Priestley duality between the category MV and a particular category of

Priestley spaces has been proved in [MT].

However for MV-algebras, the most important categorical equivalence is

due to Daniele Mundici [Mu], who showed the equivalence with regard to the

category A of lattice ordered abelian groups with a strong order unit, with

morphisms the unit preserving homomorphisms. The category L of l-groups

with morphisms the homomorphisms is also known to be equivalent to the

category CH of cancellative hoops with morphisms the homomorphisms, as

shown in [Fe]. This particular equivalence will be extremely interesting also

for the main result of this thesis, since it allows us to express in terms of

l-groups the categorical equivalence that we are going to show for the category
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of product algebras.

Hence, in the next section we are going to prove the equivalence between L
and CH, and later we also give a proof of the equivalence between the category

C of cancellative hoops with strong unit and morphisms the unit preserving

homomorphisms and the category MV . Note that we will indirectly obtain

Mundici’s equivalence. In order to do this, we will refer to the proof of the

equivalence between MV and A given in [CMD], and to [CT].

3.2 Cancellative hoops and l-groups

In this section we are going to see the equivalence between the category CH
of cancellative hoops with morphisms the homomorphisms and the category

L of l-groups with morphisms lattice homomorphisms.

Definition 3.2.1. Let G be an l-group. On the negative cone G− we can

define the operations · and → as follows:

x · y = x+ y,

x→ y = 0 ∧ (y − x)

1 = 0.

Lemma 3.2.2. G− = (G−, ·,→, 1) is a cancellative hoop.

Proof. (G−, ·, 1) is clearly an abelian monoid, partially ordered, commutative

and integral. Residuation property holds, since x→ y = 0∧(y−x) = sup{z ∈
G− : z ≤ y − x} = sup{z ∈ G− : z + x ≤ y} = sup{z ∈ G− : z · x ≤ y}.
Cancellation law holds, indeed: x→ (x · y) = 0 ∧ (x+ y − x) = y.

Definition 3.2.3. Let Ψ be the map from L to CH defined by:

Ψ(G) = G−

for every l-group G in L, and for every h l-group homomorphism:

Ψ(h) = h|G−
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Lemma 3.2.4. Ψ is a functor from L to CH

Proof. In lemma 3.2.2 we have showed that Ψ maps objects of L in objects of

CH, and clearly Ψ(h) is an homomorphisms of hoops. Moreover, it preserves

the identity map, since Ψ(idL) = id|G− = idCH and composition of morphisms,

indeed Ψ(h ◦ k) = (h ◦ k)|G− = h|G− ◦ k|G− = Ψ(h) ◦Ψ(k).

Now we are going to define the inverted functor of Ψ.

Definition 3.2.5. Let C be a cancellative hoop negatively ordered, i.e. for

x, y ∈ C, x ≤ y iff there is z ∈ C such that x = y · z. Similarly to the

construction of integers from natural numbers, we define an equivalence

relation ≡ on the cartesian product C × C. Given a, b, c, d ∈ C, we will say

that (a, b) ≡ (c, d) if a · c = b · d. The class of equivalence of this relation shall

be denoted with [a, b].

We can equip the quotient G = C ×C/ ≡ with a group structure defining

the following operations:

[a, b] + [c, d] = [a · c, b · d],

−[a, b] = [b, a],

0 = [1, 1].

Definition 3.2.6. Let G+ indicate the set {[a, 1] : a ∈ G}, as shown in [CT],

we can define a partial order relation on G:

[a, b] 4 [c, d] if [c, d]− [a, b] ∈ G+.

Moreover, relative meet and join operations can be defined as follows:

[a, b]g [c, d] = [(a · d) ∨ (c · b), b · d],

[a, b]f [c, d] = [(a · d) ∧ (c · b), b · d].

Lemma 3.2.7. The map a 7→ [1, a] is both a monoid isomorphism and an

order isomorphism from C to G−.
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Proof. It suffices to observe that given a, b ∈ C, we have that [1, a] 4 [1, b] iff

[a, b] ∈ G+ iff there is c ∈ C such that a = a · 1 = b · c iff a ≤ b.

Definition 3.2.8. Let Ψ−1 be the map from CH to L defined by:

Ψ−1(C) = G

for C cancellative hoop, and given any morphism h of CH,

Ψ−1(h)[a, b] = [h(a), h(b)].

Lemma 3.2.9. Ψ−1 is a functor from CH to L

Proof. We have already observed that Ψ−1 maps cancellative hoops in l-groups,

and it is easy to see that Ψ(h) is an l-group homomorphisms. Indeed:

Ψ−1(h)([a, b] + [c, d]) = Ψ−1(h)[a · c, b · d] = [h(a · c), h(b · d)]

= [h(a) · h(c), h(b) · h(d)] = [h(a), h(b)] + [h(c), h(d)]

= Ψ−1(h)[a, b] + Ψ−1(h)[c, d]

Ψ−1(h)(−[a, b]) = Ψ−1(h)[b, a] = [h(b), h(a)] = −[h(a), h(b)] = −(Ψ−1(h)[a, b])

Ψ−1(h)([a, b]g [c, d]) = Ψ−1[(a · d) ∨ (c · b), b · d] = [h((a · d) ∨ (c · b)), h(b · d)]

= [(h(a) · h(d)) ∨ (h(c) · h(b)), h(b) · h(d)]

= Ψ−1(h)[a, b]gΨ−1(h)[c, d]

Similarly it preserves f. Moreover, it clearly preserves the identity map, since

Ψ−1(id)[a, b] = [id(a), id(b)] = [a, b], and composition of morphisms:

Ψ−1(h ◦ k)[a, b] = [(h ◦ k)a, (h ◦ k)b] = Ψ−1(h)[k(a), k(b)]

= (Ψ−1(h) ◦Ψ−1(k))[a, b].

We now have to show that functor Ψ defines an equivalence of categories.
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Theorem 3.2.10. The composite functor ΨΨ−1 is naturally equivalent to the

identity functor of CH. In other words, for all cancellative hoops C,D and

homomorphism h : C → D, we have a commutative diagram:

C
h−→ D

ψC ↓ ↓ ψD

Ψ(Ψ−1(C))
Ψ(Ψ−1(h))−−−−−−→ Ψ(Ψ−1(D))

Proof. Given a ∈ C, ψC(a) = [1, a], and it is:

(Ψ(Ψ−1(h)))[1, a] = [h(1), h(a)] = [1, h(a)] = ψD(h(a)).

Similarly, we have the following result, that settles the equivalence between

CH and L.

Theorem 3.2.11. The composite functor Ψ−1Ψ is naturally equivalent to

the identity functor of L. In other words, for any l-group G,H and l-

homomorphism h : G→ H, we have a commutative diagram:

G
h−→ H

ψG ↓ ↓ ψH

Ψ−1(Ψ(G))
Ψ−1(Ψ(h))−−−−−−→ Ψ−1(Ψ(H))

Proof. Recall that Ψ takes the negative cone of G, and for all a ∈ G−,

ψC(a) = [1, a]. Hence we consider ψC(a) = [1, a ∧ 0] and it is again:

(Ψ−1(Ψ(h)))[1, a ∧ 0] = [h(1), h(a ∧ 0)] = [1, h(a) ∧ h(0)].

Indeed, observe that since h is an l-group homomorphism, it maps elements

of the negative cone of G in elements of the negative cone of H. Hence,

ψH(h(a)) = (Ψ−1(Ψ(h)))(ψG(a)) = [1, h(a) ∧ h(0)].

From Theorem 3.2.10 and 3.2.11 follows the final result:

Theorem 3.2.12. The functor Ψ establishes a categorical equivalence between

L and CH.
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3.3 Cancellative hoops with strong unit and

MV algebras

3.3.1 From C to MV

Let C be a cancellative hoop, and consider the l-group G such that its negative

cone is isomorphic to C. We invert the order of G, to deal with the positive

cone instead. We will consider an element u ∈ C a strong unit if it is such

that ∀x ∈ C, ∃n ∈ N : un ≤ x. Hence u will be a strong unit of G, i.e.

∀x ∈ G, ∃n ∈ N : nu ≥ x (remember that the order of G is the opposite with

respect to the order of C).

Now we consider the interval [0, u] = {x ∈ G : 0 ≤ x ≤ u}, in the positive

cone of G, which will be “dually” isomorphic, i.e. with inverted order, to the

interval [u, 1] of C.

Thus we apply Mundici’s functor to the interval [0, u] of G.

Definition 3.3.1. For each x, y ∈ [0, u], we define the following operations:

x⊕ y = u ∧ (x+ y) = u ∧ (x · y),

¬x = u− x = x→ u.

The structure ([0, u],⊕,¬, 0) is usually denoted with Γ(G, u). Since the

interval [0, u] of G is isomorphic to the interval [u, 1] of C, and C is uniquely

determined from G and viceversa, we will refer to Γ(G, u) as Γ(C, u).

Theorem 3.3.2. Γ(C, u) is a MV algebra.

Proof. We are going to show that Γ(C, u) satisfies MV 1 . . .MV 6. We first

prove MV1. We have

x⊕ (y ⊕ z) = u ∧ (x+ (u ∧ (y + z)))

and

(x⊕ y)⊕ z = u ∧ (z + (u ∧ (x+ y))).
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If x+ y ≤ u and y + z ≤ u then both members are equal to u ∧ (x+ y + z).

Otherwise, if u ≤ y + z or u ≤ x+ y then both members are equal to u. The

proofs of MV2 to MV5 are straightforward. Let us prove MV6.

¬(¬x⊕ y)⊕ y = y ⊕ ¬(y ⊕ ¬x)

= u ∧ (y + (u− (u ∧ (y + u− x))))

= u ∧ (y + u+ (−u ∨ (−y − u+ x)))

= u ∧ ((y + u− u) ∨ (y + u− y − u+ x))

= u ∧ (y ∨ x)

= y ∨ x

= ¬(¬y ⊕ x)⊕ x.

Lemma 3.3.3. Let A = Γ(C, u).

1. For all a, b ∈ A, a+ b = (a⊕ b) + (a� b),

2. for all x1 . . . xn ∈ A, x1 ⊕ . . .⊕ xn = u ∧ (x1 + . . . xn),

3. the natural order of the MV algebra A coincides with the order of [0, u]

inherited from G by restriction.

Proof. 1. a+ b− (a� b) = a+ b− ¬(¬a⊕ ¬b) = a+ b− (u− (u ∧ (u−
a+ u− b))) = a+ b− (0 ∧ (a+ b− u) = a+ b ∧ u = a⊕ b.

2. By induction on n. For n = 1 it is trivial, since the condition becomes

x1 = u ∧ x1, valid for each x ∈ A.

Now supposing the claim is valid for n, let us prove it for n+ 1.

x1 ⊕ . . .⊕ xn ⊕ xn+1 = (u ∧ (x1 + . . . xn))⊕ xn+1

= u ∧ (u ∧ (x1 + . . . xn) + xn+1

= u ∧ ((u ∧ (x1 + . . . xn)) + xn+1)

= u ∧ ((u+ xn+1) ∧ (x1 + . . . xn+1))

= u ∧ x1 + . . .+ xn+1
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3. In a MV algebra, ∧ and ∨ can be defined by:

x ∨ y = (x� ¬y)⊕ y,

x ∧ y = ¬(¬x ∨ ¬y) = x� (¬x⊕ y).

We now show that (x� ¬y)⊕ y corresponds to the ∨ operation of the

l-group, indeed:

(x� ¬y)⊕ y = (¬(¬x⊕ ¬¬y))⊕ y = x ∨ y

as already seen in the proof of 3.3.2. Similarly for ∧ operation, thus the

two orders coincides. Recall that the order of the l-group is inverted

compared with the one of the cancellative hoop C.

Remark 3.3.4. Let G be an l-group and 0 < u ∈ G. Let S = {x ∈ G :

for some 0 ≤ n ∈ Z, |x| ≤ nu}. Then S is a subgroup and a sublattice of

G containing u, and Γ(G, u) = Γ(S, u). Hence, when we consider the MV

algebra Γ(C, u) we can assume that u is a strong unit.

Definition 3.3.5. Let C and D be cancellative hoops, and let h be a can-

cellative hoop homomorphism from C to D.

Suppose that u ∈ C and v ∈ D and let h : C → D be an homomorphism

such that h(u) = v. Then h is said to be a unit preserving homomorphism.

Let Γ(h) denote the restriction of the l-group homomorphism associated

to h to the unit interval [0, u].

The following result follows straightforward from the definition given.

Lemma 3.3.6. Γ(h) is a homomorphism from Γ(C, u) into Γ(D, v).

Theorem 3.3.7. Let A denote the category whose objects are pairs 〈C, u〉
with C cancellative hoop and u a strong unit of C, and whose morphisms are

unit preserving homomorphisms. Then Γ is a functor from C into MV.

Proof. We have already observed that Γ maps objects and morphisms of C in

objects and morphism of MV, and it is clear that it preserves the identity

map and compositions of morphisms, being Γ(h) simply the restriction of an

l-group homomorphism to an interval.
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3.3.2 From MV to C: settling the equivalence

In order to show the equivalence, we have to present some preliminary

constructions.

Definition 3.3.8. A sequence a = (a1, a2, . . .) of elements of a MV algebra

A is said to be good if for each i = 1, 2 . . ., it is ai ⊕ ai+1 = ai. Instead of

a = (a1, . . . , an, 0, 0, . . .) we shall write a = (a1, . . . an).

Definition 3.3.9. For any two good sequences a = (a1, . . . , an) and b =

(b1, . . . , bn) their sum c = a + b is defined by c = (c1, . . . , cn), where for all

i = 1, 2, . . .

ci = ai ⊕ (ai−1 � b1)⊕ . . .⊕ (a1 � bi−1)⊕ bi. (3.3.1)

Theorem 3.3.10. The sum of two good sequences is a good sequence.

Proof. First we observe that (a⊕ b, a� b) is a good sequence, since in every

MV algebra A x ⊕ y ⊕ (x � y) = x ⊕ y. Indeed, recalling that every MV

algebra A is a subdirect product of MV chains, we shall write A ⊆
∏

iAi, we

prove the claim for a generic MV chain. If x⊕ y = 1 the claim follows from

axiom: x ⊕ ¬0 = ¬0. Otherwise, if x ⊕ y < 1 then ¬x 6≤ y (since in every

MV algebra x ≤ y iff ¬x⊕ y = 1), so y < ¬x and hence y � x = 0.

Note that in each MV chain x ⊕ y = x iff x = 1 or y = 0, thus in Ai

each good sequence has the form (1p, a) for p ≥ 0, a ∈ Ai, for all i ∈ I.

Moreover, a = (a1, . . . , an, . . .) is a good sequence of A iff for each i ∈ I

ai = (πi(a1), . . . , πi(an), . . .) is a good sequence in Ai, being πi the projection

on the i-eth component of the product. Indeed, an ⊕ an+1 = an iff πi(an ⊕
an+1) = πi(an) for each i ∈ I.

From 3.3.1 follows that (1p, a)⊕ (1q, b) = (1p+q, a⊕ b, a� b), thus in each

Ai the sum of two good sequences is a good sequence, and this settles the

claim.

Definition 3.3.11. Let MA be the set of good sequences of A equipped with

addition.
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Theorem 3.3.12. Let A be a MV algebra. Then MA is an abelian monoid

with the following properties:

(i) (cancellation) For any good sequences a, b, c, if a+b = a+c then b = c.

(ii) (zero-law) If a+ b = (0, 0, . . .) = (0) then a = b = (0).

Proof. From 3.3.1 we easily obtain commutativity of addition, zero-law and

a+ (0) = (a).

Now we prove associativity and cancellation in a generic MV chain, by

the usual argument on the subdirect representation follows the associativity

for addition in A. Letting a = (1p, x), b = (1q, y), c = (1r, z), we have:

(b+ a) + c = (1p+q+r, x⊕ y ⊕ z, (x� y)⊕ ((x⊕ y)� z), x� y � z)

= (1p+q+r, x⊕ y ⊕ z, (x� z)⊕ ((x⊕ z)� y), x� y � z)

= b+ (a+ c).

Since in every MV algebra holds (x�y)⊕((x⊕y)�z) = (x�z)⊕((x⊕z)�y),

for a proof of this fact see Proposition 1.6.2 in [CMD].

To prove cancellation, let us assume that a, b, c defined as before are

different from 1, the other cases being trivial. If q = r, the claim follows from

the fact that in every MV chain if x ⊕ y = x ⊕ z and x � y = x � z then

y = z. Indeed, max(¬x, y) = ¬x ⊕ (y � x) = ¬x ⊕ (z � x) = max(¬x, z).
Similarly, min(¬x, y) = min(¬x, z), hence y = z. Instead, if q < r − 1 then

from the identity (1p+q, a⊕ b, a� b) = (1p+q, a⊕ c, a� c) follows a� b = 1,

thus a = b = 1, a contradiction. If q = r − 1 then a� b = a and a⊕ b = 1,

which implies b = 1, again a contradiction. Similarly the cases in which r < q

lead to contradiction, and the proof is complete.

Definition 3.3.13. Given a = (a1, . . . , an) and b = (b1, . . . , bn), we define

a− b = (a1, . . . , an) + (¬bn, . . . ,¬b1).

Theorem 3.3.14. Let a = (a1, . . . , an) and b = (b1, . . . , bm) be good sequences.

Without loss of generality, assume m = n. Then the following are equivalent:
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1. There is a good sequence c such that b+ c = a,

2. bi ≤ ai for all i = 1, . . . , n.

Proof. 1⇒ 2 follows directly from 3.3.1.

2 ⇒ 1: since in a MV algebra x ⊕ y = x iff ¬x ⊕ ¬y = ¬y (see for

instance Lemma 1.6.1 in [CMD]), (¬bn, . . . ,¬b1) is a good sequence. Let us

consider c = a − b = (a1, . . . , an) + (¬bn, . . . ,¬b1), as already defined. We

shall prove that a = c + b. By the usual argument, we can assume that A

is totally ordered, thus a = (1p, x), b = (1q,y). We suppose both a and b

to be different from 0 and 1, such cases being trivial. Then q ≤ p. It is

b = (1q, y, 0p−q), from n = p + 1 we get (¬bn, . . . ,¬b1) = (1p−q,¬y, 0q), and

hence c is obtained by dropping the first p+1 terms from (12p−q, x⊕¬y, x	y).

Now we distinguish two cases. If y ≤ x then x 	 ¬y = 1, c = (1p−q, x 	 y)

and c + b = (1p, (x 	 y) ⊕ y, (x 	 y) � y) = (1p, y ∨ x, 0) = (1p, x) = a.

Otherwise, if y > x, then p > q, x 	 ¬y = 0, c = (1p−q−1, x ⊕ ¬y) and

c+ b = (1p−1, x⊕ ¬y ⊕ y, (x⊕ ¬y)� y) = (1p, y ∧ x) = (1p, x) = a.

Definition 3.3.15. Given a and b good sequences of A we write b ≤ a if

they satisfies the equivalent conditions of the previous theorem.

Theorem 3.3.16. Let a and b be good sequences.

1. If b ≤ a there is a unique good sequence c such that b+ c = a. This c,

denoted a− b, is given by:

c = (a1 . . . an) + (¬bn, . . . , b1)

omitting the first n terms. In particular, for each a ∈ A we have

(¬a) = (1)− (a).

2. The order is translation invariant: b ≤ a implies b+ d ≤ a+ d for every

good sequence d.
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3. The sequence

a ∨ b = (a1 ∨ b1, . . . , an ∨ bn, . . .)

is good and is in fact the supremum of a and b with respect to the order

defined.

4. The sequence

a ∧ b = (a1 ∧ b1, . . . , an ∧ bn, . . .)

is the infimum of a and b.

5. ((a) + (b)) ∧ (1) = (a⊕ b).

Proof. 1. The existence of the good sequence is assured by Theorem 3.3.14.

It is unique, indeed if there exists two good sequences c1, c2 such that

b+ c1 = a and also b+ c2 = a it would be b+ c1 = b+ c2, hence by the

cancellation law c1 = c2.

2. If b ≤ a there exists c such that b+ c = a. Thus b+ d+ c = a+ d, hence

b+ d ≤ a+ d.

3. We first show that c = a ∨ b is a good sequence. A is a sub di-

rect product of a family of MV chain {Ai}i∈I . For each i ∈ I ai =

(πi(a1), . . . , πi(an), . . .) and bi = (πi(a1), . . . , πi(an), . . .) are good se-

quences and it is ai = (1p, αi) and bi = (1q, βi), with αi, βi ∈ Ai. Hence

it is: πi(cn) = 1 if n ≤ max{p, q} and πi(cn) = 0 if n > max{p, q}+ 1.

For n = max{p, q} + 1 it is πi(cn) = αi if p > q, πi(cn) = βi if p < q

and πi(cn) = max{αi, βi} when p = q. Thus (πi(c1), . . . , πi(cn), . . .) is

a good sequence for each i ∈ I, whence c is a good sequence of A.

That c is the supremum follows from the second condition of Theorem

3.3.14.

4. The proof is similar to the proof of claim 3.

5. Follows from 3.3.1 and the definition of ∧.
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Lemma 3.3.17. (MA,+,−, (0)) is a cancellative hoop, and uA = (1) is a

strong order unit.

Proof. In particular, (MA,+,−, (0)) is what we have defined as a dual hoop.

As we have already seen, (MA,+, (0),≤) is an abelian monoid with a partial

order, it is residuated, ant it satisfies the cancellative law. It is also integral,

indeed the good sequence 1A = (1, 1, . . .) is such that a ≤ 1 for all a ∈ MA.

Clearly, for each a ∈ A, there exists m ∈ N such that muA = (1m, 0, . . .)

dominates a.

Lemma 3.3.18. The map a 7→ ϕ(a) = (a) defines a monomorphism from

the MV algebra A onto the MV algebra Γ(MA, uA).

Proof. It follows directly form the definition of ϕ(a) that it maps elements of

A to the interval ((0), uA). The map is clearly injective, since if a 6= b then

(a) 6= (b).

We now deal with the homomorphisms. Given A,B MV algebras and

h : A→ B homomorphism, if a = (a1, a2, . . .) is a good sequence of A then

(h(a1), h(a2), . . .) is a good sequence of B.

Definition 3.3.19. Let h∗ : MA →MB be defined by:

h∗(a) = (h(a1), h(a2), . . .)

for all a, b ∈MA.

Lemma 3.3.20. h∗ is both a monoid morphism and a lattice homomorphism.

Proof. It suffices to show that:

1. h∗(a+ b) = h∗(a) + h∗(b),

2. h∗(a ∨ b) = h∗(a) ∨ h∗(b),

3. h∗(a ∧ b) = h∗(a) ∧ h∗(b).
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1. For each i:

(h∗(a+ b))i = h(ai ⊕ (ai−1 � b1)⊕ . . .⊕ (a1 � bi−1)⊕ bi)

= h(ai)⊕ (h(ai−1)� h(b1))⊕ . . .⊕ (h(a1)� h(bi−1))⊕ h(bi)

= (h∗(a) + h∗(b))i,

since h is a homomorphism.

2. We have:

h∗(a ∨ b) = (h(a1 ∨ b1), . . . , h(an ∨ bn), . . .)

= (h(a1) ∨ h(b1), . . . , h(an) ∨ h(bn)), . . .)

= h∗(a) ∨ h∗(b).

3. Similar to the previous one.

Definition 3.3.21. Let ∆ :MV → C be defined by:

∆(A) = 〈MA, uA〉,

for every A MV algebra in MV , and for every h homomorphism in MV :

∆(h) = h∗.

Theorem 3.3.22. ∆ is a functor from MV into C.

Proof. We have already showed that ∆ maps objects and morphisms of

MV into objects and morphisms of C. It preserves the identity map, since

∆(id)(a1, . . . , an) = (id(a1), . . . , idan) = (a1, . . . , an) and also composition of

morphisms, indeed:

∆(h ◦ k)(a1, . . . , an) = ((h ◦ k)(a1), . . . , (h ◦ k)(an)) = ∆(h)(k(a1), . . . , k(an))

= ∆(h) ◦∆(k)(a1, . . . , an).

Furthermore, we have the following result:
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Theorem 3.3.23. The composite functor Γ∆ is naturally equivalent to the

identity functor of MV. In other words, for all MV algebras A,B and

homomorphism h : A→ B, we have a commutative diagram:

A
h−→ B

αA ↓ ↓ αB
Γ(∆(A))

Γ(∆(h))−−−−→ Γ(∆(B))

Proof. For each a ∈ A, αB(h(a)) = (h(a)) and αA(a) = (a). Moreover,

∆(h)(a) = (h(a)) the latter being an element of Γ(∆(B)). Since Γ(∆(h)) is

the restriction of ∆(h) to Γ(∆(B)), we can write Γ(∆(h))(αA(a)) = (h(a)) =

αB(h(a)), as required.

Now we are going to show that the composite functor ∆Γ is also equivalent

to the identity functor of the category C.

Theorem 3.3.24. The functor ∆Γ is naturally equivalent to the identity

functor of the category C. In other words, for any two cancellative hoops with

strong unit 〈C, u〉 and 〈D, v〉 and unit preserving homomorphism f : 〈C, u〉 →
〈D, v〉, we have a commutative diagram

〈C, u〉 f−→ 〈D, v〉
β〈C,u〉 ↓ ↓ β〈D,v〉

∆(Γ(〈C, u〉)) ∆(Γ(f))−−−−→ ∆(Γ(〈D, v〉))

Proof. Let β = ϕ ◦ γ, where ϕ is the function defined in Lemma 3.3.18,

and for all a ∈ C, γ : C → Γ(〈C, u〉) is defined by γ(a) = a ∨ u; note

that we can define γ(a) = a ∧ u if we consider the ∧ operation of the

l-group associated to C. Hence, given a ∈ C, β〈C,u〉(a) = (a ∧ u), and

∆(Γ(f))(β〈C,u〉(a)) = (f(a ∧ u)) = (f(a) ∧ f(u)) = (f(a) ∧ v). Similarly,

β〈D,v〉(f(a)) = (f(a) ∧ v).

Theorem 3.3.25. The functor Γ defines a natural equivalence between the

category C of cancellative hoops with strong unit and the category MV of MV

algebras.

Proof. Follows from theorem 3.3.23 and 3.3.24.



Chapter 4

A categorical equivalence for

product algebras

We are now ready to present the original part of this thesis, and hence

prove that there is a categorical equivalence between the category of product

algebras and the category of product triplets, which we are going to define

later on.

4.1 The greatest boolean subalgebra and the

greatest cancellative subhoop of a prod-

uct algebra

In this section we prove that every product algebra P has a greatest boolean

subalgebra, B(P), and a greatest cancellative subhoop, C(P), and we in-

vestigate the relationship between P, B(P) and C(P). We start from the

following result.

Theorem 4.1.1. Let P be a product algebra, then:

(1) The set B(P ) = {x ∈ P : ¬¬x = x} is domain of the greatest boolean

subalgebra of P.

42
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(2) The set C(P ) = {x ∈ P : ¬¬x = 1} is domain of the greatest cancella-

tive subhoop of P.

(3) For all x ∈ P, x = ¬¬x · (¬¬x → x) where ¬¬x ∈ B(P ) and ¬¬x →
x ∈ C(P ). So every x ∈ P can be represented as the product x = b · c,
b ∈ B, c ∈ C.

(4) C(P ) is the co-radical of P. 1

Proof. Referring to Notation 2.2.8, for all x ∈ P and for all i ∈ I we have:

(1) If xi ∈ Ci \ {1i}, then ¬xi = xi → 0i = 0i, and ¬¬xi = 1i 6= xi. Hence,

if x = ¬¬x, then for all i ∈ I, xi ∈ {0i, 1i}. Conversely, if xi ∈ {0i, 1i} for all

i ∈ I, then x = ¬¬x. Hence, B(P ) is the domain of a Boolean subalegbra of

2I . We claim that it is also the greatest boolean subalgebra of P. Indeed, if

x belongs to any boolean subalgebra of P, then x = ¬¬x, and x ∈ B(P ).

(2) If ¬¬x = 1, then ¬¬xi = 1i for all i ∈ I. Since ¬¬0i = 0i, it follows

that xi 6= 0i for all i ∈ I. Conversely, if xi 6= 0i for all i ∈ I, then ¬xi = 0i,

¬¬xi = 1i, and x ∈ C(P ). Hence,

C(P ) = {x : ∀i ∈ I (xi 6= 0i)} = {x : ∀i ∈ I (xi ∈ Ci)}.

Trivially, C(P ) is closed under the hoop operations, and hence it is a can-

cellative subhoop of
∏

i∈I Ci.

We claim that C(P ) is the domain of the greatest cancellative subhoop of

P. Indeed, if x belongs to some cancellative subhoop of P, then for all i ∈ I,

xi ∈ Ci, and hence ¬¬xi = 1i. It follows that ¬¬x = 1 and x ∈ C(P ).

(3) In any BL-algebra, we have a · (a → b) = a ∧ b. Since we also

have x ≤ ¬¬x, it follows x = x ∧ ¬¬x = ¬¬x · (¬¬x → x). Moreover,

¬¬¬¬x = ¬¬x, and hence ¬¬x ∈ B(P ). Finally, for all i ∈ I, if xi = 0i,

then ¬¬xi → xi = 1i ∈ Ci, and if xi 6= 0i, then ¬¬xi → xi = xi ∈ Ci. Hence,

x = ¬¬x · (¬¬x→ x), with ¬¬x ∈ B(P ) and ¬¬x→ x ∈ C(P ), as desired.

1Note that the greatest cancellative subhoop of P may be trivial even when P is

non-trivial. Indeed, C(P ) = {1} when P is a boolean algebra.
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(4) Clearly, C(P ) 6= ∅, because 1 ∈ C(P ). Moreover, for all x ∈ P , we

have x ∈ C(P ) iff for all i ∈ I, xi > 0i. Since 0i is the bottom element of Pi,

it follows that C(P ) is upward closed. Moreover, if x, x→ y ∈ C(P ), then

x · (x → y) ∈ C(P ), because C(P ) is the domain of a subhoop of P. Since

C(P ) is upward closed and x · (x→ y) ≤ y, it follows that y ∈ C(P ). Hence,

C(P ) is a filter. Moreover C(P ) is proper, since 0 6∈ C(P ). Now for all x ∈ P
and y ∈ C(P ), if x · y = 0, then for all i ∈ I, xi · yi = 0i, and since yi > 0i,

we must have xi = 0. It follows that if M is a maximal filter of P, then the

product of finitely many elements in M ∪C(P ) is non-zero. Hence, M ∪C(P )

generates a proper filter, which by the maximality of M must be equal to M .

It follows that C(P ) is contained in all maximal filters of P, and hence, it

is contained in the co-radical of P.

Conversely, if x ∈ P \ C(P ), then xi = 0 for some i, and the set M =

{x ∈ P : xi > 0} is a maximal filter that does not contain x.

It follows that x does not belong to the co-radical, and the claim is

settled.

Notation 4.1.2. In the sequel, the greatest boolean subalgebra and the

greatest cancellative subhoop of P will be denoted by B(P) and by C(P),

respectively. Elements of B(P ) will be called boolean, and elements of C(P )

will be called cancellative.

Theorem 4.1.3. Let P be a product algebra, we have the following two groups

of equivalent sentences, for all x ∈ P :

1. (a) x ∈ B(P )

(b) x2 = x

(c) x ∨ ¬x = 1

(d) ∀i ∈ I xi ∈ {0, 1}.

2. (a) x ∈ C(P )

(b) x→ x2 = x
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(c) ¬x = 0

(d) ∀i ∈ I xi > 0.

Moreover:

3. C ∩B = {1}.

Proof. 1. See [CT] and Theorem 4.1.1.1.

2. (a)↔ (d) : See Theorem 4.1.1.2

(a)↔ (c) : ¬¬x = 1⇒ ¬x→ 0 = 1. We have: ¬xi → 0 = 1 ∀i iff

¬xi = 0 ∀i, otherwise ∀xi ∈ C ¬xi → 0 = 0.

Conversely, if ¬x = 0 then ¬¬x = 0→ 0 = 1.

(b) ↔ (d) : x → x2 = x iff xi → x2
i = xi for all i, that implies

xi > 0.

Conversely, if xi > 0 then xi ∈ Ci, so xi → x2
i = xi (valid in every

cancellative hoop).

3. if x ∈ B ∩ C then x = ¬¬x = 1.

Note that there may be elements of P which are neither boolean nor

cancellative. For instance, in the algebra ([0, 1]Π)2, the element (0, 1
2
) is

neither boolean nor cancellative. Moreover, in any product algebra, 1 is the

only element which is both boolean and cancellative.

In view of Theorem 4.1.1, a naive attempt to find a categorical equivalence

for the category of product algebras (with morphism the homomorphisms)

would be to try to prove an equivalence with the product of the category of

boolean algebras and the category of cancellative hoops.

The first questions that come naturally to mind are: do we need any

specific hypothesis on the boolean algebra and the cancellative hoop to make

it possible? For instance, we may ask if they have to be linked to each other in

some way. Moreover, once the product algebra is built, is it unique? That is
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to say, do the boolean algebra and the cancellative hoop univocally determine

the product algebra on their own? In other words, we have the following

conjectures:

Conjecture (1) Given a boolean algebra B and a cancellative hoop C, there

is a product algebra P such that B(P) = B and C(P) = C.

Conjecture (2) Up to isomorphism, for each B and C as in conjecture (1),

there is only one product algebra P such that B(P) = B and C(P) = C).

We are going to prove that Conjecture (1) is true, while Conjecture (2)

is false. Hence, the product of the categories of boolean algebras and of

cancellative hoops is not equivalent to the category of product algebras.

Theorem 4.1.4. Given any boolean algebra B and any cancellative hoop C,

there is a product algebra P such that B(P) = B and C(P) = C.

Proof. We distinguish two cases:

Case (1). B is finite. Then B ∼= 2n with n > 0. Let P = 2n−1 × (2⊕C)

if n > 1 and P = 2 ⊕C if n = 1. Then P is a product algebra (since it is

product of two product algebras). Moreover P = 2n · C = B · C. Indeed,

if p ∈ P : p = (p1, . . . , pn−1, pn) with pi ∈ {0, 1} for i = 1 . . . n − 1 and

pn ∈ 2⊕ C. Now if pn = 0 then p = p · 1, with p ∈ 2n, 1 ∈ C. Else if pn ∈ C
then p = (p1, . . . , pn−1, 1) · (1, . . . , 1, pn) with p = (p1, . . . , pn−1, 1) ∈ 2n and

(1, . . . , 1, pn) ∈ C. It is easy to check that B(P) = B and C(P) = C. Indeed,

for all i ∈ I, pi = bi · ci, and since B(P) is such that for all p ∈ B(P ), for all

i ∈ I, pi ∈ {0, 1} thus clearly B(P) = 2n. Similarly, since C(P) is such that

if p ∈ C(P ) then for all i ∈ I, xi > 0 then pi = bi · ci ∈ {1, ci}, hence p ∈ C.

Moreover C(P ) is the greatest cancellative subhoop of P thus it must contain

C, and this proves that C(P) = C.

Case (2). B is infinite. Then B has a non-principal ultrafilter, U , say. Let

P′ be the product algebra B× (2⊕C) (by abuse of language, we denote by

0 (resp., by 1) both the bottom (resp., top) element of B and the bottom

(resp., top) element of 2⊕C. Moreover, let

P = {(b, 0) : b ∈ B \ U} ∪ {(b, c) : b ∈ U, c ∈ C}.
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It is readily seen that P contains (0, 0) and (1, 1), and is closed under · and

under →. (0, 0) ∈ P ′ and (1, 1) ∈ P ′′, since 0 ∈ B, 0 6∈ U and 1 ∈ U, 1 ∈ C.

P is closed under product, indeed: if (b, 0) ∈ P ′ and (b′, c) ∈ P ′′ then

(b, 0) · (b′, c) = (b′, c) · (b, 0) = (b ∧ b′, 0) ∈ P ′,

since b ∧ b′ 6∈ U with b 6∈ U .

Similarly, if (b, 0), (b′, 0) ∈ P ′ then

(b, 0) · (b′, 0) = (b ∧ b′, 0) ∈ P ′.

Finally, if (b, c), (b′, c′) ∈ P ′′ then

(b, c) · (b′, c′) = (b′, c′) · (b, c) = (b ∧ b′, c · c′) ∈ P ′′,

since U is a filter thus closed under ∧ and clearly c · c′ ∈ C if c, c′ ∈ C. P is

closed under implication, indeed: if (b, 0) ∈ P ′ and (b′, c) ∈ P ′′ then

(b, 0)→ (b′, c) = (b→ b′, 0→ c) = (b→ b′, 1) ∈ P ′′,

since b→ b′ = ¬b ∨ b′ ∈ U with b′ ∈ U .

If (b, 0), (b′, 0) ∈ P ′ then

(b, 0)→ (b′, 0) = (b→ b′, 1) ∈ P ′′

indeed again b→ b′ = ¬b∨ b′ ∈ U since in a ultrafilter b 6∈ U implies ¬b ∈ U .

If (b, c) ∈ P ′′ and (b′, 0) ∈ P ′ then

(b, c)→ (b′, 0) = (b→ b′, c→ 0) = (b→ b′, 0) ∈ P ′

indeed b→ b 6∈ U since ¬b, b′ 6∈ U .

If (b, c) ∈ P ′′ and (b′, c′) ∈ P ′′ then

(b, c)→ (b′, c′) = (b→ b′, c→ c′) ∈ P ′′.

Since the lattice operations are definable in terms of · and →, P is the

domain of a subalgebra, P say, of P′. Moreover C is isomorphic to C(P)



CHAPTER 4. A CATEGORICAL EQUIVALENCE FOR PRODUCTALGEBRAS48

via the map c 7→ (1, c), and B(P) is the subalgebra of P with domain

{(b, 0) : b ∈ B \ U} ∪ {(b, 1) : b ∈ U}, which is isomorphic to B via the map

b 7→

{
(b, 0) if b ∈ B \ U
(b, 1) if b ∈ U.

This settles the claim.

We now prove the failure of conjecture (2), that is, B(P) and C(P) do

not determine P up to isomorphism.

Theorem 4.1.5. There are non-isomorphic product algebras P and P′ such

that B(P) ∼= B(P′) and C(P) ∼= C(P′).

Proof. Let C be a non-trivial totally ordered cancellative hoop, and let

P = (2⊕C)ω and P′ = 2ω × (2⊕Cω).

We have B(P) = 2ω ∼= 2ω+1 = B(P′), and C(P) = Cω ∼= C(P′).

On the other hand, P and P′ are not isomorphic. To see this, let b ∈ 2ω

be defined by bi = 1 for all i ∈ ω, and consider (b, 0) ∈ P ′. Note that (b, 0)

has the following properties:

(i) (b, 0) is boolean; (ii) (b, 0) is not the top; (iii) if (b, 0) < (b′, c), then

(b′, c) is cancellative; (iv) the set of upper bounds of (b, 0) is not totally

ordered.

If P and P′ were isomorphic, there would be x ∈ P satisfying (i), (ii), (iii)

and (iv). Now let, by way of contradiction, x ∈ P be such that (i), (ii), (iii)

and (iv) are satisfied. Since x is boolean and it is not the top, there is an

index i ∈ ω such that xi = 0, and for all j ∈ ω, xj ∈ {0, 1}. If there are i 6= j

such that xi = xj = 0, then the element y defined by yi = 0 and yj = 1 for

j 6= i is a non cancellative element above x, and (iii) does not hold. If, say,

xi = 0 and xj = 1 for j 6= i, then the set of upper bounds of x is the set of

all elements z such that zi ∈ 2 ⊕C and zj = 1 for j 6= i. This is a totally

ordered set, being order isomorphic to 2⊕C, and (iv) cannot hold.

This settles the claim.
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4.2 External join, the category of product triplets

and the functor Φ

As proved by Theorem 4.1.5, although every element of a product algebra P

is the product of an element of B(P) and an element of C(P), the algebras

B(P) and C(P) do not determine P up to isomorphism. This is due to the

fact that in general there are many ways to define the product of an element

of B(P) and an element of C(P), all leading to a product algebra.

Hence, we need additional structure in order to define product in a unique

way. The idea is to introduce a third component, namely, the join of an

element of B(P) and an element of C(P). Note that such join is in C(P),

because, by Theorem 4.1.1, C(P ) is filter of P. Hence, we have a map, called

external join and denoted by ∨e, from B(P)×C(P) into C(P), satisfying

suitable properties which will be presented below. The goal is to prove that

such properties allow us to obtain a category which will turn out to be

equivalent to the category of product algebras.

Lemma 4.2.1. Let P = (P, ·,→,∨,∧, 0, 1) be a product algebra, and let ∨e
denote the restriction of ∨ to B(P )× C(P ). Then for all b, b′ ∈ B(P ) and

c, c′ ∈ C(P ), the following conditions hold:

(J1) (b ∨e c) ∨ c′ = b ∨e (c ∨ c′) = (b ∨e c) ∨ (b ∨e c′)

(J2) b ∨e (c ∧ c′) = (b ∨e c) ∧ (b ∨e c′)

(J3) (b ∨ b′) ∨e c = b ∨e (b′ ∨e c) = (b ∨e c) ∨ (b′ ∨e c)

(J4) (b ∧ b′) ∨e c = (b ∨e c) ∧ (b′ ∨e c)

(J5) 1 ∨e c = b ∨e 1 = 1 and 0 ∨e c = c

(J6) (b ∨e c) · c′ = (¬b ∨e c′) ∧ (b ∨e c · c′)

(J7) Define, for all b ∈ B(P ),

θb = {(c, c′) : c, c′ ∈ C(P ) and ¬b ∨e c = ¬b ∨e c′}.
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Then θb is a congruence of C(P). Moreover, θ0 and θ1 are the maximum

and the minimum congruence of C(P), respectively.

Proof. With the exception of (J7), all claims have a similar proof, which

refers to the subdirect representation according to Notation 2.2.8. Let i ∈ I
be arbitrary. Then clearly bi, b

′
i ∈ {0i, 1i}.

(J1) If bi = 0i, then (b∨e c)i∨ c′i = ci∨ c′i = bi∨e (c∨ c′)i = (b∨e c)i∨ (b∨e c′)i.

If bi = 1i, then (b ∨e c)i ∨ c′i = 1i = bi ∨e (c ∨ c′)i = (b ∨e c)i ∨ (b ∨e c′)i.

(J2) Similarly, if bi = 0i, then bi ∨e (c ∧ c′)i = ci ∧ c′i = (b ∨e c)i ∧ (b ∨e c′)i.

If bi = 1i, then bi ∨e (c ∧ c′)i = 1i = 1i ∧ 1i = (b ∨e c)i ∧ (b ∨e c′)i.

(J3) If bi = b′i = 0i, then (b∨b′)i∨eci = ci = bi∨e(b′∨ec)i = (b∨ec)i∨(b′∨ec)i.

If bi = 1i or b′i = 1i, then (b∨b′)i∨eci = bi∨e(b′∨ec)i = (b∨ec)i∨(b′∨ec)i =

1i.

(J4) If bi = b′i = 1i then (b ∧ b′)i ∨e ci = 1i = 1i ∧ 1i = (b ∨e c)i ∧ (b′ ∨e c)i.

If bi = 0i or b′i = 0i, then (b∧b′)i∨e ci = 0i∨e ci = ci = (b∨e c)i∧(b′∨e c)i.

(J5) Trivial, since 0 and 1 are respectively the bottom and the top of the

product algebra.

(J6) If bi = 0i, then (b∨e c)i ·c′i = ci ·c′i = 1i∧(ci ·c′i) = (¬b∨e c′)i∧(b∨e c ·c′)i.

If bi = 1i, then (b ∨e c)i · c′i = 1i · c′i = c′i = c′i ∧ (1i ∨ ci · c′i) =

(¬b ∨e c′)i ∧ (b ∨e c · c′)i.

(J7) Let, for every i ∈ I, θi denote the congruence of C(P) induced by

the ist projection, that is, θi = {(c, c′) : ci = c′i}. If bi = 0 then for

all c, c′ ∈ C(P ) we have (¬b ∨e c)i = (¬b ∨e c′)i = 1. If bi = 1, then

(¬b ∨e c)i = (¬b ∨ c′)i iff ci = c′i, that is, iff (c, c′) ∈ θi. It follows

that (c, c′) ∈ θb iff (c, c′) ∈ θi for all i ∈ I such that bi = 1i. Hence,

θb =
⋂
i∈I:bi=1i

θi. Being an intersection of congruences, θb is in turn a

congruence.
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That θ0 is the maximum congruence and θ1 is the minimum congruence

follows directly from the definition.

We are ready to define a category which will turn out to be equivalent to

the category of product algebras.

Definition 4.2.2. A product triplet is a triplet (B,C,∨e), where B is a

boolean algebra, C is a cancellative hoop, and ∨e is a map from B × C into

C satisfying properties (J1), . . . ,(J7) in Lemma 4.2.1, where ∨ and ∧ denote

indifferently the join (resp., the meet) operation in B or in C.

A good pair from a product triplet (B,C,∨e) into another product triplet

(B′,C′,∨′e) is a pair (h, k) where h is a homomorphism from B into B′,

k is a homomorphism from C into C′, and for all x ∈ B and y ∈ C,

k(x ∨e y) = h(x) ∨′e k(y).

The product triplets are the objects of a category, whose morphisms from

an object T = (B,C,∨e) into another object T′ = (B′,C′,∨′e) are the good

pairs from T into T′ (of course, the composition (h, k) ◦ (h′, k′) of two good

pairs is defined componentwise: (h, k) ◦ (h′, k′) = (h ◦ h′, k ◦ k′)).

Notation 4.2.3. The category of product triplets just defined will be de-

noted by T , and the category of product algebras, with morphisms the

homomorphisms, will be denoted by P .

From (J1) and (J3), we obtain that in a product triplet, the function ∨e
is monotonic in both arguments. This property will be used repeatedly in

the sequel.

Lemma 4.2.4. ∨e respecting properties from (J1) to (J7) preserves ≤.

Proof. Let a, b ∈ B boolean algebra, and c, d ∈ C cancellative hoop. First

we prove the statement for the first component, thus suppose a ≤ b, hence

b = a ∨ b. Using (J3) we obtain:

a ∨e c ≤ (a ∨e c) ∨ (b ∨e c) = (a ∨ b) ∨e c = b ∨e c.
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For the second component, let us suppose c ≤ d, hence d = c ∨ d. From (J1)

we get:

b ∨e c ≤ (b ∨e c) ∨ (b ∨e d) = b ∨e (c ∨ d) = b ∨e d.

Definition 4.2.5. We define a functor Φ from P into T as follows:

(1) For every object P, of P , we set Φ(P) = (B(P),C(P),∨e), where ∨e is

the restriction of join to B(P )× C(P ).

(2) For every morphism f from P into P′, we set Φ(f) = (h, k), where h

and k are the restrictions of f to B(P) and to C(P), respectively.

Note that Φ(f) = (h, k) is a good pair, because, for all b ∈ B(P ) and for

all c ∈ C(P ), k(b ∨e c) = f(b) ∨ f(c) = h(b) ∨e k(c). We have the following

result:

Theorem 4.2.6. Φ is a functor from P into T .

Proof. Given P product algebra, (B(P),C(P),∨e) is clearly a product triple

in the sense of Definition 4.2.2, since natural join satisfies properties of

Lemma 4.2.1. Moreover, if f : P→ P′, f�B(P )
is an homomorphism that maps

B(P) to B(P′), indeed if x ∈ B(P ) ¬¬f(x) = f(¬¬x) = f(x). Similarly

f�C(P )
is an homomorphism that maps C(P) to C(P′), in fact if x ∈ C(P )

¬¬f(x) = f(¬¬x) = f(1) = 1. Also, trivially f(b ∨e c) = f(b ∨ c) =

f(b) ∨′ f(c) = f(b) ∨′e f(c). To prove that Φ is a functor, we need to show

that it preserves the identity map id (which is trivial) and composition of

morphisms:

Φ(f ◦ g)(b, c) = ((f ◦ g)�B(P )
, (f ◦ g)�C(P )

)(b, c) = ((f ◦ g)(b), (f ◦ g)(c))

= (f(g(b)), f(g(c))) = (f�B(P )
, f�C(P )

)(g(b), g(c))

= (f�B(P )
, f�C(P )

)((g�B(P )
, g�C(P )

)(b, c)) = (Φ(f) ◦ Φ(g))(b, c)
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4.3 Inverting the functor Φ

Our aim is to define a functor Φ−1 from T into P such that the pair (Φ,Φ−1)

is an equivalence of categories. Our first step will be the following: given

a product triplet T = (B,C,∨e), construct a product algebra P such that

Φ(P) is isomorphic to T (that is, there is a good pair (h, k) from T into Φ(P)

such that h is an isomorphism from B onto B(P) and k is an isomorphism

from C onto C(P)).

We start from the following observation: every element x of a product

algebra P can be written as x = b · c with b ∈ B(P ) and c ∈ C(P ). In

general, the decomposition is not unique. For instance, for all c ∈ C(P ) \ {1},
0 ·c = 0 ·1 = 0. The next lemma provides a characterization of all b, b′ ∈ B(P )

and c, c′ ∈ C(P ) such that b · c = b′ · c′.

Lemma 4.3.1. For all b, b′ ∈ B(P ) and c, c′ ∈ C(P ), the following are

equivalent:

(i) b · c ≤ b′ · c′

(ii) b ≤ b′ and ¬b ∨ c ≤ ¬b ∨ c′.

Hence, b · c = b′ · c′ iff b = b′ and ¬b ∨ c = ¬b ∨ c′.

Proof. (i) ⇒ (ii). Suppose b 6≤ b′. Then, with reference to Notation 2.2.8,

there is an index i ∈ I such that bi = 1i and b′i = 0i. It follows 0i =

(b′ · c)i < ci = bi · ci = (b · c)i, and hence b · c 6≤ b′ · c′. Now suppose b ≤ b′

and ¬b ∨ c 6≤ ¬b ∨ c′i. Then for some i ∈ I, it must be ¬bi ∨ ci > ¬bi ∨ c′i.
Then clearly bi = 1i (otherwise ¬bi ∨ c′i = 1i), and hence b′i = 1i. Moreover,

ci = ¬bi ∨ ci > ¬bi ∨ c′i = c′i, and ci = (b · c)i > c′i = (b · c′)i = (b′ · c′)i, a

contradiction. Hence, b · c ≤ b′ · c′ implies b ≤ b′ and ¬b ∨ c ≤ ¬b ∨ c′.

(ii) ⇒ (i). Suppose (ii) holds. With reference to Notation 2.2.8, for

all i ∈ I, if bi = 0i, then certainly 0i = (b · c)i ≤ (b′ · c′)i. If bi = 1, then

(b · c)i = ci = 0i ∨ ci = (¬b ∨ c)i ≤ (¬b ∨ c′)i = c′i = 1i · c′i = (b′ · c′)i.

Lemma 4.3.1 suggests the following definition:
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Definition 4.3.2. Let (B,C,∨e) be a product triplet. For all (b, c), (b′, c′) ∈
B × C, we define (b, c) � (b′, c′) iff b ≤ b′ and ¬b ∨e c ≤ ¬b ∨e c′. Moreover,

we define (b, c) ∼ (b′, c′) iff (b, c) � (b′, c′) and (b′, c′) � (b, c).

Lemma 4.3.3. (1) The relation � is a preorder on B × C.

(2) The relation ∼ is an equivalence relation on B × C.

(3) Let for all (b, c) ∈ B × C, [b, c] denote the equivalence class of (b, c)

modulo ∼, let B ⊗∨e C be the quotient of B × C modulo ∼, and define,

for [b, c], [b′, c′] ∈ B ⊗∨e C, [b, c] / [b′, c′] iff (b, c) � (b′, c′). Then / is

(well defined and) a partial order on B ⊗∨e C.

(4) If b ≤ b′ and c ≤ c′, then [b, c] / [b′, c′].

Proof. That � is reflexive is obvious. In order to show transitivity, let

(b, c) � (b′, c′) � (b′′, c′′). Then b ≤ b′ ≤ b′′, and hence, b ≤ b′′. In order to

conclude the proof of transitivity, it is left to prove that ¬b ∨e c ≤ ¬b ∨e c′′.
To this purpose, note that ¬b ∨e c ≤ ¬b ∨e c′ and ¬b′ ∨e c′ ≤ ¬b′ ∨e c′′. But

since b ≤ b′, ¬b′ ≤ ¬b, and by using (J3) we have:

¬b ∨e (¬b′ ∨e c′) = (¬b ∨ ¬b′) ∨e c′ = ¬b ∨e c′ and

¬b ∨e (¬b′ ∨e c′) ≤ ¬b ∨e (¬b′ ∨e c′′) = ¬b ∨e c′′

Thus ¬b ∨e c′ ≤ ¬b ∨e c′′ and finally ¬b ∨e c ≤ ¬b ∨e c′ ≤ ¬b ∨e c′′. Hence, �
is transitive.

Claims (2) and (3) readily follow from claim (1).

Finally, claim (4) follows from the monotonicity of ∨e (see Remark 4.2)

and from the definition of �.

Definition 4.3.4. On B ⊗∨e C, we define:

[b, c] ⊗ [b′, c′] = [b ∧ b′, c · c′]
[b, c] u [b′, c′] = [b ∧ b′, c ∧ c′]
[b, c] t [b′, c′] = [b∨ b′, ((¬b∨¬b′)∨e(c∨c′))∧((b∨¬b′)∨ec′)∧((b′∨¬b)∨ec)]
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[b, c] ⇒ [b′, c′] = [b→ b′, ¬b ∨e (c→ c′)].

Moreover, we denote by B ⊗∨e C the algebra whose universe is B ⊗ C
and whose operations are ⊗, u, t and ⇒ defined above.

Our next goal is to prove that B ⊗∨e C is a product algebra. To begin

with, we prove that the above operations are well defined.

Lemma 4.3.5. The operations ⊗,u,t,⇒ just defined are compatible with

∼, and hence they are well defined on B ⊗ C.

Proof. Due to the commutativity of ⊗, t and u, it suffices to prove the

following: suppose

(∗) (b1, c1) ∼ (b2, c2), that is, b1 = b2 and ¬b1 ∨e c1 = ¬b2 ∨e c2.

Then we need to prove:

(1) (b ∧ b1, c · c1) ∼ (b ∧ b2, c · c2)

(2) (b ∧ b1, c ∧ c1) ∼ (b ∧ b2, c ∧ c2).

(3) (b ∨ b1, ((¬b ∨ ¬b1) ∨e (c ∨ c1)) ∧ ((b ∨ ¬b1) ∨e c1) ∧ ((b1 ∨ ¬b) ∨e c))) ∼
(b ∨ b2, ((¬b ∨ ¬b2) ∨e (c ∨ c2)) ∧ ((b ∨ ¬b2) ∨e c2) ∧ ((b2 ∨ ¬b) ∨e c))).

(4) (b→ b1,¬b ∨e (c→ c1)) ∼ (b→ b2, ¬b ∨e (c→ c2))

(5) (b1 → b, ¬b1 ∨e (c1 → c)) ∼ (b2 → b,¬b2 ∨e (c2 → c).

We prove (1). Since b1 = b2, condition (1) reduces to (¬b ∨ ¬b1) ∨e (c · c1) =

(¬b ∨ ¬b1) ∨e (c · c2).

Then using (∗) and (J3) we derive (¬b∨¬b1)∨e c1 = (¬b∨¬b1)∨e c2, that

is, (c1, c2) ∈ θb∧b1 .
Since θb∧b1 is a congruence, we get (c · c1, c · c2) ∈ θb∧b1 , which is equivalent

to (1).

The proof of (2) is similar to the proof of claim (1). Indeed, we have b1 = b2,

thus condition (1) reduces to (¬b ∨ ¬b1) ∨e (c ∧ c1) = (¬b ∨ ¬b1) ∨e (c ∧ c2).
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Then again from (∗) and (J3) we get (¬b∨¬b1)∨ec1 = (¬b∨¬b1)∨ec2, that

is, (c1, c2) ∈ θb∧b1 , and since θb∧b1 is a congruence, we get (c∧c1, c∧c2) ∈ θb∧b1 ,
which is equivalent to (2).

We prove (3). Again, since b1 = b2, it suffices to prove:

(�) ((¬b ∨ ¬b1) ∨e (c ∨ c1)) ∧ ((b ∨ ¬b1) ∨e c1) ∧ ((b1 ∨ ¬b) ∨e c) =

((¬b ∨ ¬b1) ∨e (c ∨ c2)) ∧ ((b ∨ ¬b1) ∨e c2) ∧ ((b1 ∨ ¬b) ∨e c).

Both members of (�) are the meet of three terms. Since the third conjuncts

in the left side and in the right side are identical, it suffices to prove:

(3i) (¬b ∨ ¬b1) ∨e (c ∨ c1) = (¬b ∨ ¬b1) ∨e (c ∨ c2);

(3ii) (b ∨ ¬b1) ∨e c1 = (b ∨ ¬b1) ∨e c2.

By (∗), ¬b1 ∨e c1 = ¬b1 ∨e c2, and using (J3) we get (b ∨ ¬b1) ∨e c1 =

(b ∨ ¬b1) ∨e c2, that is, (3ii).

By the same argument, we get (¬b ∨ ¬b1) ∨e c1 = (¬b ∨ ¬b1) ∨e c2.

Hence, (c1, c2) ∈ θb∧b1 , and since θb∧b1 is a congruence, (c1∨c, c2∨c) ∈ θb∧b1 ,
which is equivalent to (3i).

We now prove (4). Since b1 = b2, it suffices to prove

((b ∧ ¬b1) ∨ ¬b) ∨e (c→ c1) = ((b ∧ ¬b1) ∨ ¬b) ∨e (c→ c2),

which is equivalent to

(¬b ∨ ¬b1) ∨e (c→ c1) = (¬b ∨ ¬b1) ∨e (c→ c2).

Once again, the claim follows from the fact that θb∧b1 is a congruence.

The proof of (5) is similar to the proof of claim (4). Hence, it suffices to

prove

(¬b1 ∨ ¬b) ∨e (c1 → c) = (¬b1 ∨ ¬b) ∨e (c2 → c).

The claim similarly follows from the fact that θb∧b1 is a congruence.

We are going to prove that for every product triplet (B,C,∨e), the algebra

P = B⊗∨e C is a product algebra.
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Lemma 4.3.6. t, u are join and meet operations with respect to /.

Proof. We first prove the claim for u. To this purpose, note that [b, c] u [b′, c′]

is a lower bound for [b, c] and [b′, c′]. Indeed, b∧b′ ≤ b, b′ and from c∧c′ ≤ c, c′

it follows:

¬(b ∧ b′) ∨e (c ∧ c′) ≤ ¬(b ∧ b′) ∨e c, ¬(b ∧ b′) ∨e (c ∧ c′) ≤ ¬(b ∧ b′) ∨e c′.

It remains to prove that [b ∧ b′, c ∧ c′] is the greatest lower bound of [b, c] and

[b′, c′]. To this aim, suppose [b1, c1]/ [b, c], [b′, c′]. Then b1 ≤ b and b1 ≤ b′, and

hence, b1 ≤ b ∧ b′. Moreover ¬b1 ∨e c1 ≤ ¬b1 ∨e c, and ¬b1 ∨e c1 ≤ ¬b1 ∨e c′.
Hence, ¬b1∨e c1 ≤ ¬b1∨e (c∧ c′). Thus [b1, c1]/ [b∧ b′, c∧ c′], and [b∧ b′, c∧ c′]
is the greatest lower bound of [b, c] and [b′, c′].

We now prove that [b, c] t [b′, c′] is an upper bound of both [b, c] and

[b′, c′]. Clearly b, b′ ≤ b ∨ b′, and it is left to prove

(t 1) ¬b ∨e c ≤ ¬b ∨e (E1 ∧ E2 ∧ E3),

(t 2) ¬b′ ∨e c′ ≤ ¬b′ ∨e (E1 ∧ E2 ∧ E3), where

E1 = (¬b ∨ ¬b′) ∨e (c ∨ c′), E2 = (¬b ∨ b′) ∨e c and E3 = (¬b′ ∨ b) ∨e c′.

We prove (t 1), the proof of (t 2) being similar. Now by the monotonicity

of ∨e, ¬b ∨e c ≤ E1 ≤ ¬b ∨e E1, and ¬b ∨e c ≤ E2 ≤ ¬b ∨e E2. Moreover

¬b ∨e ((¬b′ ∨ b) ∨e c′) = 1 ∨e c′ = 1 ≥ ¬b ∨e c, and hence, ¬b ∨e c ≤ E3, as

desired.

We now prove that [b, c] t [b′, c′] is the least upper bound of [b, c] and

[b′, c′]. Thus let [b1, c1] be any upper bound of [b, c] and [b′, c′]. Then b, b′ ≤
b1, ¬b ∨e c ≤ ¬b ∨e c1 and ¬b′ ∨e c′ ≤ ¬b′ ∨e c1. We need to verify that

[b, c] t [b′, c′] / [b1, c1].

Clearly, b ∨ b′ ≤ b1, and it is left to prove

(t 3) (¬b ∧ ¬b′) ∨e (E1 ∧ E2 ∧ E3) ≤ (¬b ∧ ¬b′) ∨e c1.

Using (J1), (J2), (J3) and (J4) and the monotonicity of ∨e, it suffices to

prove
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(t 4) E1 ∧ E2 ∧ E3 ≤ (¬b ∨ c1) ∧ (¬b′ ∨e c1).

Now E1 = (¬b∨¬b′)∨e (c∨c′) ≤ (¬b∨¬b′)∨e c1, and E2 = (¬b∨b′)∨e c =

b′ ∨e (¬b ∨e c) ≤ b′ ∨e (¬b ∨e c1) = (b′ ∨ ¬b) ∨e c1.

Hence, E1 ∧ E2 ≤ ((¬b′ ∨ ¬b) ∧ (b′ ∨ ¬b)) ∨e c1 = ¬b ∨e c1.

Similarly E1∧E3 ≤ ¬b′∨e c1. Hence, E1∧E2∧E3 ≤ (¬b∨e c1)∧(¬b′∨e c1),

as desired.

Lemma 4.3.7. B⊗∨e C is a CIPRL.

Proof. We have just seen that B ⊗∨e C is a lattice, and it is easy to check

that [0, 1] and [1, 1] are its minimum and maximum, respectively. Indeed, for

all [b, c] ∈ B ⊗∨e C:

[0, 1] / [b, c] / [1, 1]

since 0 ≤ b ≤ 1, 1 ∨ 1 = 1 ∨ c and ¬b ∨ c ≤ ¬b ∨ 1 = 1.

Commutativity and associativity of ⊗ trivially follows from commutativity

and associativity of ∧ and ·, and it is easy to check that [1, 1] is the neutral

element since [b, c]� [1, 1] = [1, 1]� [b, c] = [b ∧ 1, c · 1] = [b, c].

In order to verify the monotonicity of ⊗, suppose [b, c] / [b1, c1]. We need

to show that [b, c] ⊗ [b2, c2] = [b∧ b2, c · c2]/ [b1∧ b2, c1 · c2] = [b1, c1] ⊗ [b2, c2].

From our hypothesis we have b ≤ b1 and ¬b ∨2 c ≤ ¬b ∨e c1. Thus b ∧ b2 ≤
b1 ∧ b2 is trivial. Moreover, it is ¬b2 ∨e (¬b ∨e c) ≤ ¬b2 ∨e (¬b ∨e c1). Then

(¬b ∨ ¬b2) ∨e c ≤ (¬b ∨ ¬b2) ∨e c1. But since θb∧b2 is a congruence on C, thus

(¬b ∨ ¬b2) ∨e c · c2 ≤ (¬b ∨ ¬b2) ∨e c1 · c2 which completes the proof. The

commutativity of ⊗, implies that ⊗ is monotonic in both arguments.

To conclude the proof, it remains to show that the residuation property

holds. We have to verify that for [b, c], [b1, c1], [b2, c2] in B ⊗∨e C, one has

[b, c] / [b1, c1]⇒ [b2, c2] iff [b, c]⊗ [b1, c1] / [b2, c2].

Now using the definitions of ⇒ and of ⊗, along with property (J6) and

with the identity [b, c] = [b,¬b ∨ c], we obtain:

[b, c]⊗ ([b, c]⇒ [b′, c′]) = [b, c]⊗ [b→ b′,¬b ∨e (c→ c′)]

= [b ∧ (¬b ∨ b′), c · (¬b ∨e (c→ c′))]
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= [b ∧ b′, (b ∨e c) ∧ (¬b ∨e c · (c→ c′))]

= [b ∧ b′, (b ∨e c) ∧ (¬b ∨e (c ∧ c′)]
= [b∧b′, ((¬b∨¬b′∨b))∨ec)∧((¬b∨¬b′)∨e (c∧c′))]
= [b ∧ b′, c ∧ c′] = [b, c] u [b′c′].

This property, together with monotonicity of ⊗, shows that if [b1, c1] ≤
[b, c]⇒ [b′c′], then [b, c]⊗ [b1, c1] / [b′, c′].

In order to conclude the proof of residuation, suppose [b, c] ⊗ [b1, c1] =

[b ∧ b1, c · c1] / [b′, c′], and let us prove that [b1, c1] / [b, c]⇒ [b′, c′]. We have:

(R) b ∧ b1 ≤ b′ and (¬b ∨ ¬b1) ∨e (c · c1) ≤ (¬b ∨ ¬b1) ∨e c′,

which immediately implies b1 ≤ b→ b′, and it is left to prove that

¬b1 ∨e c1 ≤ ¬b1 ∨e (¬b ∨e (c→ c′)) = (¬b1 ∨ ¬b) ∨e (c→ c′).

Now θb∧b1 is a congruence of C, and by (R) the inequality c · c1 ≤ c′ holds in

the quotient C/θb∧b1 . Hence, in such quotient we have c1 ≤ c→ c′. In other

words, (¬b ∨ ¬b1) ∨e c1 ≤ (¬b ∨ ¬b1) ∨ (c→ c′), which immediately implies

¬b1 ∨e c1 ≤ (¬b ∨ ¬b1) ∨e (c→ c′), that is, the claim.

Theorem 4.3.8. B⊗∨e C is a product algebra.

Proof. We have seen in the proof of Lemma 4.3.7 that B⊗∨e C is a CIPRL

which satisfies divisibility, that is, [b, c]⊗ ([b, c]⇒ [b′, c′]) = [b, c] u [b′, c′].

We prove that B⊗∨e C is a BL-algebra, that is, we prove that it satisfies

prelinarity

(Prel) ([b, c]⇒ [b′, c′]) t ([b′, c′]⇒ [b, c]) = [1, 1].

Now ([b, c]⇒ [b′, c′])t ([b′, c′]⇒ [b, c]) = [(b→ b′)∨ (b′ → b), F1∧F2∧F3],

where

F1 = ((b ∧ ¬b′) ∨ (b′ ∧ ¬b)) ∨e ((¬b ∨e (c→ c′)) ∨ (¬b′ ∨e (c′ → c)))

F2 = ((b→ b′) ∨ (b′ ∧ ¬b)) ∨e (¬b′ ∨e (c→ c′))

F3 = ((b′ → b) ∨ (b ∧ ¬b′)) ∨e (¬b ∨e (c′ → c)).
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Since (b→ b′) ∨ (b′ → b) = 1, it is left to prove that F1 = F2 = F3 = 1.

Now F1 ≥ (c→ c′) ∨ (c′ → c) = 1,

F2 ≥ (b→ b′) ∨ ¬b′ = 1, and

F3 ≥ (b′ → b) ∨ ¬b = 1.

In order to conclude the proof, it is left to prove the equation (Π) of

product algebras. We give an indirect proof, starting from a lemma which

will be used in the sequel.

Lemma 4.3.9. (1) The maps h : b 7→ [b, 1] and k : c 7→ [1, c] are monomor-

phisms from B and from C, respectively, into B⊗∨e C.

(2) Each element of B ⊗∨e C can be written as [b, 1] ⊗ [1, c] for some

b ∈ B, c ∈ C.

3 For all b ∈ B and c ∈ C, k(b∨e c) = h(b)t k(c). That is, if we identify

every element of B with its isomorphic image via h and each element of

C with its isomorphic image via k, then for all b ∈ B and c ∈ C, b ∨e c
represents the join of b and c in B⊗∨e C.

Proof. (1) We first prove the claim for h. Injectivity of h is trivial, and it is

readily seen that h preserves meet, top and bottom.

We verify that h preserves join:

h(b) t h(b′) = [b ∨ b′, ((¬b ∨ ¬b′) ∨e 1) ∧ ((¬b ∨ b′) ∨e 1) ∧ (b ∨ ¬b) ∨e 1]

= [b ∨ b′, 1] = h(b ∨ b′).

We verify that h preserves ¬:

¬h(b) = [b, 1]⇒ [0, 1] = [¬b,¬b ∨e (1→ 1)] = [¬b, 1] = h(¬(b).

We verify that k is one-one. If c 6= c′, then c = ¬1 ∨e c 6= ¬1 ∨e c′ = c′,

and hence k(c) = [1, c] 6= [1, c′] = k(c′).

Trivially, k(1) = [1, 1]. Since in a cancellative hoop and in a BL-algebra

the lattice operations are definable in terms of multiplication and of its

residuum, in order to prove that k is a homomorphism, it suffices to show

that it preserves · and →.
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Now k(c · c′) = [1, c · c′] = [1, c]⊗ [1, c′] = k(c)⊗ h(c′).

Moreover

k(c→ c′) = [1, c→ c′] = [1, 0 ∨e c→ c′] = [1, c]⇒ [1, c′] = k(c)⇒ k(c′).

This concludes the proof of (1).

(2) We have [b, c] = [b, 1]⊗ [1, c], as desired.

(3) We have

[b, 1]t[1, c] = [b∨1, ((¬b∨0)∨e(c∨1))∧((¬b∨1)∨e1)∧((b∨0)∨ec] = [1, b∨ec].

This concludes the proof of Lemma 4.3.9.

We conclude the proof of Theorem 4.3.8. We already know that B⊗∨eC is a

BL-algebra. Hence, it is a subdirect product of BL chains: B⊗∨eC ⊆s
∏

i∈I Pi.

Moreover, every element of B⊗∨e C is the product of an element of a boolean

subalgebra and an element of a cancellative subhoop, of B ⊗∨e C. Hence,

for all i ∈ I, the same decomposition property holds for Pi. Since the only

linearly ordered boolean algebra is 2, there is a cancellative subhoop, Ci, of

Pi such that every element x of Pi has the form x = b · c, where c ∈ Ci and

either b = 0, and hence, x = 0, or b = 1, and hence, x = c ∈ Ci. In other

words, Pi = 2⊕Ci.

Hence, Pi is a product algebra, and B⊗∨e C, being a subdirect product

of product algebras, is in turn a product algebra.

We are ready to define a functor Φ−1 from the category T of product

triplets into the category P of product algebras.

Definition 4.3.10. For every object T = (B,C,∨e), of T , we define Φ−1(T) =

B⊗∨ C. Moreover, for every good pair (h, k) from an object T = (B,C,∨e)
into another object, T′ = (B′,C′,∨′e), of T , we define, for all [b, c] ∈ Φ−1(T),

Φ−1(h, k)([b, c]) = [h(b), 1] ⊗′ [1, k(c)] = [h(b), k(c)], where ⊗′ denotes the

monoid operation in Φ−1(T′).
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Theorem 4.3.11. Φ−1 is a functor from T into P.

Proof. By Theorem 4.3.8, for every object T of T , Φ−1(T) is a product

algebra. Moreover, if (h, k) is a good pair from T into T′, then Φ−1(h, k)

is clearly a map from Φ−1(T) into Φ−1T′. In order to prove that it is a

homomorphism, since in a product algebra the lattice operations are definable

from the monoid operation and its residual, it suffices to prove that Φ−1(h, k)

preserves ⊗ and ⇒. Now using the superscript ′ to denote operations in B′

or in C′ or in B′ ⊗∨′e C′,

Φ−1(h, k)([b1, c1]⊗ [b2, c2]) = Φ−1(h, k)([b1 ∧ b2, c1 · c2])

= [h(b1) ∧′ h(b2), k(c1) ·′ k(c2)]

= [h(b1, k(c1)]⊗′ [h(b2), k(c2)]

= Φ−1(h, k)([b1, c1])⊗′ Φ−1(h, k)([b2, c2]).

Moreover,

Φ−1(h, k)([b1, c1]⇒ [b2, c2]) = Φ−1(h, k)([b1 → b2,¬b1 ∨e (c1 → c2])

= [h(b1)→′ h(b2),¬′h(b1) ∨′e (k(c1)→′ k(c2)].

On the other hand,

Φ−1(h, k)([b1, c1])⇒′ Φ−1(h, k)([b2, c2]) = [h(b1), k(c1)]⇒′ [h(b2), k(c2)]

= [h(b1)→ h(b2),¬′h(b1) ∨′e (k(c1)→′ k(c2)],

and the claim is proved.

Clearly Φ−1 preserves identity morphisms, and it is left to prove that it

preserves compositions. Now a straightforward computation shows that if

(h, k) is a good pair from T = (B,C,∨e) into T′ = (B′,C′,∨′e) and (h′, k′) is

a good pair from T′ into T′′ = (B′′,C′′,∨′′e), then for all [b, c] ∈ B ⊗ C, we

have

Φ−1((h′, k′)◦(h, k))([b, c]) = (Φ−1(h′, k′))◦(Φ−1(h, k))([b, c]) = [h′(h(b)), k′(k(c))].



CHAPTER 4. A CATEGORICAL EQUIVALENCE FOR PRODUCTALGEBRAS63

4.4 Concluding the proof of the categorical

equivalence

In this section we prove the main result of this thesis, that is, the categories

P and T are equivalent. We start from the following lemma.

Lemma 4.4.1. (a) Let T = (B,C,∨e) be an object of T . Then the sets

B0 = {[b, 1] : b ∈ B} and C0 = {[1, c] : c ∈ C} are the domains of the

maximum boolean subalgebra and of the maximum cancellative subhoop of

B⊗∨e C, respectively.

Proof. Given [b, c] ∈ B ⊗∨e C, we have ¬[b, c] = [b, c]⇒ [0, 1] = [¬b, 1], and

hence, ¬¬[b, c] = [b, 1]. It follows that ¬¬[b, c] = [b, c] iff [b, c] = [b, 1]. This

means that B0 is the domain of the greatest boolean subalgebra of B⊗∨e C.

Moreover, ¬¬[b, c] = [1, 1] iff b = 1. Hence, C0 is the domain of the greatest

cancellative subhoop of B⊗∨e C.

We are ready to prove our main result.

Theorem 4.4.2. The pair (Φ,Φ−1) provides an equivalence between the

categories P and T .

Proof. By Theorem 1, page 93 of [ML], it will suffice to prove the following:

(a) The functor Φ−1 is faithful and full.

(b) For every object P in P , Φ−1(Φ(P)) is isomorphic to P.

As regards to (a), we prove first that Φ−1 is faithful. Let (h, k), (h′, k′)

be two good pairs from T = (B,C,∨e) into T′ = (B′,C′,∨′e), and sup-

pose Φ−1(h, k) = Φ−1(h′, k′). Then for every [b, c] ∈ B ⊗ C, [h(b), k(c)] =

[h′(b), k′(c)]. This implies that h(b) = h′(b) for all b ∈ B. Moreover fix-

ing b = 1, we obtain that (1, k(c)) ∼ (1, k′(c)) for all c ∈ C, and hence,

k(c) = k′(c) for all c ∈ C. Hence, (h, k) = (h′, k′), and Φ−1 is faithful.

In order to prove that Φ−1 is full, let f be a morphism Φ−1(T) into

Φ−1(T′). Then for b ∈ B and for c ∈ C, f([b, 1]) is an element of a boolean
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subalgebra of Φ−1(T′), and hence, by Lemma 4.4.1, has the form [b′, 1] for a

(necessarily unique) b′ ∈ B′. We set h(b) = b′. Likewise, f([1, c]) = [1, c′] for

some (necessarily unique, because θ1 is the identity congruence) c′ ∈ C ′. We

set k([1, c]) = c′.

We prove that (h, k) is a good pair. That h and k are homomorphisms on

B and on C follows from the definitions of h and k. For instance, k preserves

→, because

[1, k(c→ c′)] = f([1, c]⇒ [1, c′]) = f([1, c])⇒′ f([1, c′])

= [1, k(c)]⇒ [1, k(c′)] = [1, k(c)→ k(c′)].

We verify that for b ∈ B and for c ∈ C, one has k(b ∨e c) = h(b) ∨e k(c).

Now by Lemma 4.3.9 (3),

[1, k(b ∨e c)] = f([b, 1] t′ [1, c]) = f([b, 1]) t′ f([1, c]) = [h(b), 1] t′ [1, k(c)] =

[1, h(b) ∨e k(c)],

which implies k(b ∨e c) = h(b) ∨′e k(c).

Hence, (h, k) is a good pair. Moreover, f([b, c)]) = f([b, 1] ⊗ [1, c]) =

[h(b), 1]⊗ [1, k(c)] = [h(b), k(c)], and f = Φ−1(h, k). Hence, Φ−1 is full.

We now prove claim (b). Let P be any product algebra. Then every

element p ∈ P can be written as p = b · c, with b ∈ B(P ) and c ∈ C(P ).

We set g(p) = [b, c]. Since b · c = b′ · c′ iff b = b′ and ¬b ∨e c = ¬b ∨e c′, iff

[b, c] = [b′, c′], g is a well defined and one-one map from P into Φ−1(Φ(P )).

That g is onto is clear. Hence, g is a bijection, and since residuals may be

expressed in terms of order and of the monoid operation, it is left to prove:

(b1) g is an order isomorphism, and

(b2) g is a monoid isomorphism.

For (b1), we have, for all b, b′ ∈ B(P ) and for all c, c′ ∈ C(P ), b · c ≤ b′ · c′

iff b ≤ b′ and ¬b ∨e c ≤ ¬b ∨ c′ iff g(b · c) = [b, c] / [b′, c′] = g(b′ · c′).

For (b2), we have g(b·c·b′·c′) = [b∧b′, c·c′] = [b, c]⊗[b′, c′] = g(b·c)⊗g(b′·c′).

This concludes the proof of Theorem 4.4.2
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4.5 Additional results

4.5.1 Special cases of the equivalence theorem

Theorem 4.4.2 specializes to an equivalence between the full subcategory P2

of all product algebras of the form 2⊕C, C a cancellative hoop. Indeed, if

P = 2⊕C is an object of P2, then B(P) = 2, C(P) = C, and with reference

to Notation 2.2.8,

(b ∨e c)i =

{
1i if bi = 1i

ci otherwise

Hence, Φ(P) only depends on C(P).

Likewise, if f is a homomorphism from P = 2⊕C to P′ = 2⊕C′, the

restriction h of f to 2 is the map sending 1 into 1 and 0 into 0, and hence,

Φ(f) really depends on its restriction k to C. Hence, we may replace product

triplets by cancellative hoops and the good pairs by the homomorphisms on

cancellative hoops, thus obtaining that the category P2 is equivalent to the

category of cancellative hoops. Since this category is in turn equivalent to

the category of lattice ordered abelian groups, we obtain Cignoli and Torrens

equivalence as a special case of Theorem 4.4.2.

Note also that boolean algebras may be characterized as those product

algebras P such that C(P) is a trivial hoop, and ∨e is defined by b ∨e 1 = 1

for all b ∈ B(P ). In this case, Φ(P) only depends on B(P) and a morphism

on P only depends on its restriction to B(P). But since B(P) = P, the result

is just a triviality.

4.5.2 Filters

We have noticed in Section 2 that filters are in bijection with congruences, and

hence, with epimorphisms. Since a homomorphism f on a product algebra P

is uniquely determined by its restrictions h and k to B(P ) and to C(P ), we

may expect that a filter F of P is uniquely determined by its intersection FB

with B(P ) and by its intersection FC with C(P ). Moreover, since h and k
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are not arbitrary homomorphisms on B(P) and on C(P), respectively, but

they must satisfy the equation k(b ∨e c) = h(b) ∨e k(c), we may expect that

FB and FC are related by a suitable property. This property is described in

the next definition.

Definition 4.5.1. Let T = (B,C,∨e) be a good triplet. A good filter pair

of T is a pair (F1, F2) such that F1 is a filter of B, F2 is a filter of C, and for

all b ∈ F1 and for all c ∈ C, if ¬b ∨e c ∈ F2, then c ∈ F2.

Theorem 4.5.2. (1) If P is a product algebra and F is a filter of P, then

(FB, FC) is a good filter pair, and F = {b · c : b ∈ FB, c ∈ FC}.

(2) For every good filter pair (F1, F2) of (B(P),C(P),∨e), the set F1 ·F2 =

{b · c : b ∈ F1, c ∈ F2} is a filter of P.

Proof. (1) That FB is a filter of B(P) and FC is a filter of C(P) is clear.

Moroever, if b ∈ F1, then b ∈ F , and (¬b, 0) ∈ θF . Moreover, if ¬b ∨e c ∈ FC ,

then ¬b ∨e c ∈ F , and (¬b ∨e c, 1) ∈ θF . Since (¬b, 0) ∈ θF , we conclude that

(c, 1) ∈ θF , and hence, c ∈ F ∩ C(P ) = FC .

Now if b ∈ FB and c ∈ FC , then b, c ∈ F , and hence b · c ∈ F , because

filters are closed under ·. Conversely, if x ∈ F , then x is the product of an

element b ∈ B(P ) and an element c ∈ C(P ). Moreover, b · c ≤ b · 1 = b, and

b · c ≤ 1 · c = c, and hence, b, c ∈ F . Moreover b ∈ F ∩ B(P ) = FP , and

c ∈ F ∩ C(P ) = FC . Hence, x = b · c with b ∈ B(P ) and c ∈ C(P ).

(2) We start from the following lemma:

Lemma 4.5.3. If b ·c = b′ ·c′, if b ∈ F1 and C ∈ F2, then b′ ∈ F1 and c′ ∈ F2.

Proof. If b · c = b′ · c′, then b = b′ and ¬b ∨e c = ¬b ∨e c′. Hence, b′ = b ∈ F1.

Moreover, since ¬b ∨e c ≥ c ∈ F2, we get ¬b ∨ c′ = ¬b ∨ c ∈ F2. From this,

since b ∈ F1, we obtain c′ ∈ F2.

We conclude the proof of Theorem 4.5.2. Since 1 = 1 · 1 and 1 ∈ F1 ∩ F2,

we have 1 ∈ F1 · F2.
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Now suppose x, x → y ∈ F1 · F2. Then there are b1, b2 ∈ F1, c1, c2 ∈ F2,

b′ ∈ B(P ) and c′ ∈ C(P ) such that x = b1 · c1, x→ y = b2 · c2, and y = b′ · c′.
Now b2 · c2 = x→ y = (b1 → b′) · (¬b1 ∨e (c1 → c′)), with b1 → b′ ∈ B(P ) and

¬b1 ∨e (c1 → c′) ∈ C(P ). By Lemma 4.5.3, b1 → b′ ∈ F1, and ¬b1 ∨e (c1 →
c′) ∈ F2. Finally, since b1 ∈ F1, we get b′ ∈ F1 and c1 → c′ ∈ F2, which,

together with c1 ∈ F2, yields c′ ∈ F2 and y = b′ · c′ ∈ F1 · F2.

This settles the claim.



Conclusions and open problems

After our way through the foundaments of fuzzy logic and the study of some

important categorical equivalences in algebraic logic, at last we came to the

final achievement of this thesis, i.e. the categorical equivalence for product

algebras we have developed in the last chapter. This is an original result, and

to the best of our knowledge it is the first equivalence involving the whole

variety of product algebras.

We have showed how any product algebra P can be expressed by means

of a precise boolean algebra B(P) and a precise cancellative hoop C(P), and

that in order to have a categorical equivalence we needed to consider the

external join between bolean and cancellative elements.

It is possible to think about other ways to obtain different categorical

equivalences in this area of research.

For instance, let us consider the following construction. Given a product

algebra P, and given an element a ∈ P , and let P[a] be the interval [a, 1]

with the following operations:

x� y = (x · y) ∨ a,

x⇒ y = x→ y,

0 = a,

1 = 1.

If a ∈ C(P ), P[a] is a MV algebra, and with this construction we have a

categorical equivalence if a is a strong order unit.
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Hence we may ask what do we obtain if we consider a boolean element

instead of a cancellative element, or if we consider an element which is neither

boolean nor cancellative.

We may wonder what happens if we start from a cancellative hoop and

consider the construction C[a] as before. Furthermore, we may wonder what is

the connection between C and the family of MV algebras {C[a] : a < 1, a ∈ C},
and see whether and how they are related one to the other, or if it is possible

to obtain a categorical equivalence with a category of MV algebras starting

from this construction. The same problem can clearly be formulated in terms

of l-groups, and thus for each l-group G one can study the family of MV

algebras {Γ(G, a) : a ∈ G}.
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[Ha] P. Hàjek, Metamathematics of fuzzy logic, Kluwer, 1998.

[ML] S. Mac Lane, Categories for the Working Mathematician, second

edition, Graduate Texts in Mathematics, Springer, 1997.

[MT] F. Montagna, C. Tsinakis, Ordered groups with a conucleus, Journal

of Pure and Applied Algebra 214 (1), 71-88, (2010).

[Mo] F. Montagna, Subreducts of MV Algebras with Product and Product

Residuation, Algebra Universalis 53, 109-137, 2005.



BIBLIOGRAPHY 72

[MP] N. G. Martinez, H.A. Priestley, On Priestley Spaces of Lattice-

Ordered Algebraic Structures, Order 15, 297-323, 1998.

[Mu] D. Mundici, Interpretation of AF C*-algebras in  Lukasiewicz senten-

tial calculus, Journal of Functional Analysis 65, 15-63, 1986.

[Pr] H. A. Priestley, Representation of distributive lattices by means of

ordered Stone spaces, Bulletin of the London Mathematical Society 2,

186-190, 1970.

[Ru] B. Russell, Vagueness, Australasian Journal of Philosophy 1, 84-92,

1923.

[St] M.H. Stone, The theory of representations of Boolean algebras, Amer-

ican Mathematical Society 40, 37-111, 1936.


