
Alma Mater Studiorum - Universit

`

a di Bologna

SCUOLA DI LETTERE E BENI CULTURALI

Corso di Laurea Magistrale in Scienze Filosofiche

The Discriminating Power of Higher-Order Languages:

A Process Algebraic Approach

Tesi di Laurea in Logica(1)(lm)

Relatore:
Prof.ssa Giovanna Corsi

Correlatore:
Prof. Davide Sangiorgi

Presentata da:
Valeria Vignudelli

Sessione II
Anno Accademico 2012/2013

Abstract

Questa tesi analizza di↵erenti soluzioni volte a stabilire l’equivalenza di processi non-

deterministici rappresentati da strutture matematiche note come Sistemi di Transizione

Etichettati. La tesi è composta da due parti: nella prima parte introduciamo alcuni dei

principali strumenti teorici e risultati emersi nella letteratura contemporanea, in particola-

re in ambito informatico; nella seconda parte della tesi proponiamo un nuovo approccio alle

equivalenze, utilizzando un linguaggio di ordine superiore per testare il comportamento di

un sistema.

La prima parte della tesi fornisce una panoramica delle principali equivalenze osservaziona-

li su Sistemi di Transizione Etichettati, dalle meno discriminanti (equivalenze a tracce) alle

più discriminanti (bisimilarità e isomorfismo). Introduciamo inoltre diverse logiche mo-

dali e mostriamo come queste permettano di ottenere caratterizzazioni alternative delle

equivalenze discusse. I processi esaminati sono inizialmente processi puramente nondeter-

ministici. Prendiamo quindi in considerazione Sistemi di Transizione Etichettati probabi-

listici, volti alla modellizzazione di processi in cui le transizioni di stato possono avere una

specifica probabilità di essere e↵ettuate.

Nella seconda parte della tesi l’equivalenza di due processi viene esaminata definendo un

insieme di test tramite cui è possibile interagire con essi e determinare eventuali di↵erenze

nel loro comportamento. Il contributo originale di questa ricerca consiste nel considerare

un linguaggio dei test che include operatori di ordine superiore. Applichiamo questo

insieme di test sia a processi puramente nondeterministici che a processi con transizioni

probabilistiche e dimostriamo due risultati principali.

Nel caso in cui i processi testati siano processi nondeterministici, caratterizziamo la in-

distinguibilità di due processi rispetto all’intera classe dei test con un’equivalenza nota

nella letteratura come ready simulation equivalence. Il potere discriminante del linguaggio

aumenta se applichiamo i test a processi probabilistici. In particolare, dimostriamo che

l’equivalenza rispetto ai test coincide con la bisimilarità probabilistica.

1

2 Abstract

Contents

Introduction 7

1 Behavioral equivalences on nondeterministic processes 13

1.1 Labelled Transition Systems . 13

1.2 Bisimilarity . 15

1.2.1 Approximants of bisimilarity . 18

1.2.2 Hennessy-Milner Logic . 20

1.3 Why bisimilarity? . 23

1.3.1 Trace equivalence . 23

1.3.2 Completed trace equivalence . 25

1.3.3 Simulation equivalence . 27

1.3.4 Completed simulation equivalence 31

1.3.5 Ready simulation equivalence . 33

1.3.6 Bisimilarity and isomorphism . 35

1.3.7 The spectrum of equivalences . 37

1.4 A Calculus of Communicating Systems . 37

2 Probabilistic processes 43

2.1 Probabilistic Labelled Transition Systems 43

2.2 Probabilistic bisimilarity . 47

2.2.1 Probabilistic bisimilarity through lifted relations 47

2.2.2 Probabilistic bisimilarity on reactive probabilistic processes 50

2.2.3 Probabilistic Modal Logic . 52

2.3 Larsen & Skou’s testing theory . 55

2.3.1 Testability of PML-formulas . 56

2.3.2 Characterization of probabilistic bisimilarity 63

3 Testing processes through higher-order languages 65

3.1 Testing equivalences . 65

3.2 HOL . 66

3.3 Testing nondeterministic processes . 68

3

4 Contents

3.3.1 Testing preorders on nondeterministic processes 69

3.3.2 Ready simulation equivalence implies test-equivalence 70

3.3.3 Characterization of may-equivalence 75

3.3.4 Characterization of testing equivalences 77

3.4 Testing probabilistic reactive processes . 78

3.4.1 Testing preorders on probabilistic processes 79

3.4.2 HOL-contexts discriminate non-probabilistically bisimilar processes . 81

3.4.3 Probabilistic bisimilarity implies test-equivalence 86

3.4.4 The collapse of equivalences . 100

Appendix: Complete lattices and fixed-points 101

Bibliography 105

List of Figures

1.1 An LTS. 14

1.2 The LTS reachable from the process S3 in Figure 1.1. 15

1.3 Bisimilar processes. 16

1.4 ⇠! 6✓⇠ . 20

1.5 Trace equivalent processes. 25

1.6 Trace equivalence and completed trace equivalence. 26

1.7 Completed trace equivalent processes. 27

1.8 A process completed simulation equivalent to R (Fig. 1.7). 33

1.9 Ready simulation equivalent processes. 36

1.10 The spectrum of equivalences. 38

1.11 SOS for processes in CCS. 39

1.12 The process a.(b.0+ c.d̄.0). 41

1.13 Some CCS processes. 42

2.1 A pLTS. 45

2.2 A reactive probabilistic process. 47

3.1 SOS for processes in HOLn. 69

3.2 SOS for processes in HOLp. 79

5

6 List of Figures

Introduction

Labelled Transition Systems are widely used mathematical structures. In theoretical com-

puter science, Labelled Transition Systems are a fundamental semantic tool describing

the behavior of interactive systems. Formally, Labelled Transition Systems are relational

structures, that is, sets equipped with one or more relations on its items defining the

state-transitions that may occur at any stage of the computation. These relations are

labelled, which means that they are indexed by names representing the actions the system

can perform while interacting with the environment, such as input or output actions, or

internal moves that are not observable from the outside.

What happens during the computations of an interactive system strictly depends on what

happens in the environment it interacts with. This is the reason why nondeterministic

processes are more suitable for describing the behavior of such a system than functions

are. Thus, a state of a Labelled Transition System represents a stage that a process may

reach after performing a given sequence of actions.

Modal Logics

A major field of study where Labelled Transition Systems play a central role is philo-

sophical logic. Besides being possible models for classical first-order languages, these

structures provide a mathematical semantics for modal logics, where they are known as

Kripke frames.1 As is well-known, the formal semantics of the concepts of necessity and

possibility is defined over relational structures. Moreover, the interpretation of temporal

logics (aimed at modeling temporarily qualified statements such as “F will always be true

in the future” or “ At least once in the past it was the case that F”), deontic logics (dealing

with what is forbidden and what is allowed), epistemic logics (logics for reasoning about

knowledge and beliefs) hinges on Kripke frames.

Modal logics have also been fruitfully applied in computer science. The expressiveness yet

simplicity of modal languages make them a useful tool for checking properties of Labelled

Transition Systems. For instance, basic modal languages are powerful enough to capture

1As pointed out in (Goldblatt 2006), it was over a period of three decades from the early 1930s that it
became clear that modal logics can be interpreted on relational structures. Kripke frames are named after
Saul Kripke (Kripke 1963).

7

8 Introduction

safety properties and liveness properties of systems, that is, properties stating that nothing

bad can happen (such as “it is never the case that the system does x”) and something good

will happen (such as “Now or then the system will execute x”), respectively. Hennessy-

Milner Logic is such a modal language. Furthermore, Hennessy-Milner Logic allows us to

alternatively characterize a well-known equivalence relation on nondeterministic processes:

bisimilarity.2

Behavioral equivalences

It is not easy to understand what it means for two processes to have the same behavior.

If we are only interested in the behavior of the systems, requiring that two systems are

identical under renaming of the states (that is, requiring that they are isomorphic) is too

strong a condition. At the same time, many equivalence relations defined in the literature

are too underdiscriminating when applied to nondeterministic processes. Trace-based

equivalences, which identify two processes by comparing the sequences of actions they can

perform, are examples of such relations.

Bisimulation relations independently appeared both in modal logic and in computer science

between the 1970s and the 1980s .3 In his PhD thesis4, Johan van Benthem addresses the

problem of comparing the expressiveness of propositional modal languages and classical

first-order languages. In this setting, Van Benthem defines zigzag relations on Kripke

models and proves that modal formulas correspond to a fragment of classical first-order

logic invariant under bisimulations. Contemporarily, the work of Robin Milner5 and David

Park6 on the semantic of interactive systems gives rise to the notion of bisimulation, a

relation on the states of a Labelled Transition System which coincides with Van Benthem’s

zigzag relations.7

Bisimulation relations induce an equivalence relation on processes, i.e. bisimilarity, which

is taken to be a suitable notion of behavioral equivalence on Labelled Transition Systems.

Bisimilarity also has a simple proof method: in order to prove that two processes are

equivalent, we exhibit a relation containing the pair of processes and we verify that the

relation is a bisimulation.8

2Hennessy-Milner Logic is named after Matthew Hennessy and Robin Milner (Hennessy and Milner
1985).

3See (Sangiorgi 2012b) for an historical analysis of the discovery of bisimulations.
4The thesis was discussed in 1974 and it is published in (van Benthem 1983).
5(Milner 1980, Milner 1989).
6(Park 1981).
7In the same period, bisimulations also appeared in set theory as relations for defining equivalences on

non-well founded sets. See (Aczel 1988).
8This holds because bisimulations are coinductive relations. The definition of a coinductive set rests on

the dual of the induction principle, i.e. the coinduction principle. The former defines a set by means of
constructors; the latter defines a set by observing objects. See (Sangiorgi 2012a) for a fixed-point approach
to coinduction and (Jacobs and Rutten 2012) for an algebraic approach.

9

Probabilistic processes

There are di↵erent possible extensions of Labelled Transition Systems. For instance, the

definition of a Kripke model in modal logic rests on the enrichment of a Kripke frame

obtained by associating to every state the set of propositional variables it satisfies. Prob-

abilistic Labelled Transition Systems are another extension. Formally, a probabilistic

Labelled Transition System is obtained by defining the transition relation as a relation

from states to probability distributions on states. We can take a probabilistic process to

be the refinement of a nondeterministic process determined after gaining new knowledge

about the system, i.e. the knowledge concerning the probability a transition has of being

performed.

Several models for describing probabilistic processes appear in the literature,9 and their

di↵erences mainly lie in the interplay that is allowed between nondeterministic and prob-

abilistic choices. In this work, we let probabilistic Labelled Transition Systems (or proba-

bilistic processes) denote a general model where there are no limitations to this interplay.

Equivalences and modal logics for probabilistic processes need to take into account the

quantitative information that is now available in the structures they are applied to. Prob-

abilistic bisimulations meet this requirement by considering not only the possibility but

also the probability of performing a state-transition. Symmetrically, probabilistic modal

languages do not simply check whether a formula is satisfied or not; rather, they verify

the probability a formula has of being satisfied.

Process calculi and higher-order languages

Concurrency theory investigates the behavior of concurrent programs, that is, programs

interacting with one another while running in parallel. As has emerged previously, pro-

cesses (formalized by means of Labelled Transition Systems) are a suitable semantics for

interactive systems. Process calculi (or process algebras) are a linguistic support for spec-

ifying concurrent programs.

The language of a process calculus includes operators for representing communications

and the parallel composition of terms. A process calculus is a calculus since it is equipped

with a syntax-driven semantics10 which identifies the terms of the language with the states

of a process and allows us to derive the transitions from a state by means of a set of rules.

As a result, a Labelled Transition System is associated to any term of the process calculus,

which in turn specifies a concurrent system.

These general features constitute the common basis of a large family of process calculi

9A comparison of a variety of probabilistic models is in (Sokolova and Vink 2004).
10This syntax-driven semantics is the structural operational semantic first introduced by Gordon D.

Plotkin (Plotkin 2004b,Plotkin 2004a).

10 Introduction

developed in the last forty years.11 Well-known examples of process calculi are CCS (Cal-

culus of Communicating Systems),12 CSP (Communicating Sequential Processes)13 and

ACP (Algebra of Communicating Processes).14 In process calculi such as CCS, the syn-

chronization of atomic input-output actions emitted by processes running in parallel is

the only form of interaction allowed between terms. The ⇡-calculus15 is a more expressive

calculus, in that it models processes that interact through channels where they can com-

municate channel names to one another. Di↵erently, in higher-order process calculi the

communication between processes includes the exchange of terms of the languages.

Higher-order languages are meant to model a powerful feature of programs, i.e. the pos-

sibility of taking programs themselves as input. The pure �-calculus is a paradigmatic

example of a higher-order language: the variables of the �-calculus range over the whole

class of the �-terms and the �-reduction allows a function to take any term of the language

as argument. The pure �-calculus is a calculus of functions, hence the determinism of its

computations does not make it a suitable language for modeling concurrent processes.

Higher-order process calculi include HO⇡, a ⇡-calculus with higher-order communication,

and the Kell Calculus,16 a family of process calculi which further extends the ⇡-calculus

with both higher-order operators and constructs for modeling distributed systems.

Testing equivalences

We have introduced behavioral equivalences on processes, but we have not discussed a

fundamental aspect in the definition of a behavioral equivalence yet: what does it mean

to observe the behavior of a system? Which notion of observer are we assuming?

To address this problem, Robin Milner suggests a “ button-pushing scenario” where the

observer performs experiments on an interactive system (the agent) presented as a black

box:

An agent may be thought of as a black box, equipped with a button for each

experiment. It also has a green light, which is lit i↵ the agent is proceeding

without responding to experiment. To attempt an experiment e on agent p

we apply continuous pressure to the e-button; if the button goes down (after

some time) then p has accepted the experiment, and if the green light goes o↵

without the button moving then p has rejected the experiment. While neither

occurs (and if p can diverge then it is possible that neither will occur) we can

conclude nothing.

11For a brief reconstruction of the origins and the evolution of process algebras we refer the reader to
(Baeten 2005).

12(Milner 1980, Milner 1989).
13(Hoare 1978).
14(Bergstra and Klop 1984).
15(Sangiorgi and Walker 2001).
16(Schmitt and Stefani 2005).

11

(Milner 1981:26)

Thus, it is quite natural to try to characterize behavioral equivalences by means of exper-

iments, or tests. In order to formalize this approach, one should rigorously define what

a testing scenario is and what it means for two processes to be indistinguishable in the

testing scenario.

Rocco De Nicola and Matthew Hennessy17 first proposed a general setting for testing non-

deterministic processes and defined three testing-based equivalences: may-equivalence,

must-equivalence and test-equivalence. Samson Abramsky18 applied these ideas to bisim-

ilarity. In his testing scenario, the experimenter is allowed to test whether a process can

or cannot perform an action, to make an unlimited number of copies of the process and

to have a global perspective on the nondeterministic branches at any stage of the process.

As a result, test-equivalence and bisimilarity collapse into one.

Outline of the thesis

This thesis analyzes various approaches to the behavioral equivalence of processes rep-

resented as Labelled Transition Systems. The thesis is divided into two parts: the first

part (Chapter 1 and Chapter 2) aims at introducing some of the main results in the field,

while in the second (Chapter 3) we propose a new approach to testing equivalences by

considering a higher-order language of tests.

Chapter 1 is devoted to an overview of equivalence relations on nondeterministic processes,

from the coarser ones (trace-based equivalences) to the finer ones (bisimilarity and iso-

morphism). Analogously to the characterization of bisimilarity through Hennessy-Milner

logic, alternative characterizations of these equivalences on processes are given through a

variety modal languages. Finally, we introduce the process calculus CCS.

Chapter 2 analyzes probabilistic Labelled Transition Systems and probabilistic bisimi-

larity. Reactive probabilistic processes are an interesting class of probabilistic processes

since we can regard them as a first refinement of nondeterministic processes where inter-

nal choices are equipped with fixed probability values. We present both a logical and a

testing-based characterization of bisimilarity on reactive probabilistic processes.

In Chapter 3 we investigate the equivalences that can be recovered by testing both the

class of nondeterministic processes and the class of reactive probabilistic processes. The

novelty of the approach put forward in this thesis lies in considering testing scenarios

where contexts of the nondeterministic higher-order language HOL play the role of tests.

HOL is inspired by the Kell Calculus and besides some of the usual CCS operators it

17(De Nicola and Hennessy 1984).
18(Abramsky 1987).

12 Introduction

includes constructs for localities, passivation of localities, local communication and refusal

of actions. These constructs allow us to define tests with two powerful features: testing

the impossibility of performing an action and executing multiple tests on the process at

any time of the computation, by copying it into di↵erent localities. We prove two main

results.

If a test T in HOL is executed on a fully nondeterministic process P , we can observe

whether P may pass T (i.e. there exists a successful execution of the test) or whether P

must pass T (i.e. there are no unsuccessful executions). Two nondeterministic processes

P and Q are may-equivalent (respectively: must-equivalent) if P and Q may (must) pass

exactly the same tests. We prove that in this testing scenario ready-simulation equivalence,

viz. a slightly coarser relation than bisimilarity, coincides with may-equivalence, which in

turn implies must-equivalence.

Finally, HOL-contexts are employed to test reactive probabilistic processes. In this case, it

is possible to observe whether a process may, or must, pass a test with a specific probability,

and the testing equivalences require these values to coincide. Knowing the probabilities of

passing a test increases the discriminating power of HOL-contexts. In particular, we prove

that in this testing scenario there is a collapse of equivalences: probabilistic bisimilarity

coincides with both may-equivalence and must-equivalence.

Chapter 1

Behavioral equivalences on

nondeterministic processes

In this chapter we introduce Labelled Transition Systems, namely relational structures

representing nondeterministic processes. Bisimilarity is a suitable notion of behavioral

equivalence for this semantic (Aceto et al. 2007, Sangiorgi 2012a): Section 1.2 is devoted

to introducing bisimulations and the alternative characterizations of bisimilarity through

inductively defined relations and Hennessy-Milner Logic. Section 1.3 justifies the pivotal

role played by bisimilarity. We compare bisimilarity to several equivalence relations on

nondeterministic processes and we argue that each of these relations either equates too

many processes or distinguishes structures that an observer would consider the same.

Finally, Section 1.4 presents the Calculus of Communicating Systems, viz. a language for

describing concurrent programs and their interactions.

1.1 Labelled Transition Systems

A Labelled Transition System is a tuple which consists of a set of states, a set of atomic

actions, or labels, and a labelled transition relation on the set of states. To put it di↵er-

ently, Labelled Transition Systems are labelled directed graphs.

These structures are widely used in computer science as abstract models of concurrent

systems.19 We can look at the states of a Labelled Transition System as nondeterministic

processes evolving into other processes by means of actions representing their communi-

cations or interactions with the environment (Milner 1989).

Definition 1.1. A Labelled Transition System (LTS) is a tuple T = hSt,A ,�!i where:
19Labelled Transition System are pervasive mathematical structures. For instance, in modal logic they

are multisorted Kripke models whose set of propositional variables is empty; see (Blackburn, de Rijke, and
Venema 2001).

13

14 Chapter 1 Behavioral equivalences on nondeterministic processes

- St is a non-empty set of states or processes,

- A is a set of atomic actions,

- �!✓ St⇥ A ⇥ St is a labelled transition relation on the set of states.

In what follows, we use P,Q,R, S... (and their indexed variants P1, P2 . . . , R1, R2, . . .) to

range over processes and µ (and its indexed variants µ1, µ2 . . .) to range over A , whose

elements are denoted by a, b, c,

S S3

S1

S2

S4 S5

a

a

c

b

a

c

b

Figure 1.1: An LTS.

For instance, Figure 1.5 is the graphical representation of the LTS T = hSt,A ,�!i,
where:

St ={S, S1, S2, S3, S4, S5}
A ={a, b, c}
�!={(S, a, S1), (S, b, S2), (S1, b, S2), (S, a, S3), (S3, c, S3), (S3, c, S1), (S4, a, S5)}.

Given any LTS T = hSt,A ,�!i, we write:

P
µ�! P 0 if (P, µ, P 0) 2�!

P
µX�! P 0 if (P, µ, P 0) 62�!

P
µX�! if P

µX�! P 0 for all processes P 0

P X�! if P
µX�! for all atomic actions µ.

Definition 1.2. Let P be a process in T = hSt,A ,�!i. A process P 0 in T is reachable

from P if there is an n 2 N such that:

P = P0
µ1�! P1

µ2�! . . .
µn�! Pn

1.2 Bisimilarity 15

for some processes P0, P1, . . . , Pn and for some atomic actions µ1, µ2, . . . , µn.

The LTS reachable from P is the LTS TP = hStP ,AP ,�!P i defined as follows:

- StP ✓ St is the set of states reachable from P , i.e. the set:

{Pn|P µ1�! P1
µ2�! . . .

µn�! Pn, for some n 2 N, P1, . . . , Pn�1, µ1, . . . , µn},

- AP = {µ|µ 2 A and P 0 µ�! for some P 0 2 StP },

- �!P is the restriction of �! to StP and AP .

S3

S1

S2

c

b

c

Figure 1.2: The LTS reachable from the process S3 in Figure 1.1.

An LTS T = hSt,A ,�!i is:

- finite if its set of states St is finite and it has no loops, that is, for every P, P 0 2 St

if P 0 is reachable from P then P 6= P 0,

- finite-state if its set of states is finite,

- finitely branching if for every state P , the set of P ’s derivatives (i.e. the set

{P 0| P µ�! P 0 for some µ}) is finite,

- image-finite if for every state P and for every µ, the set of P ’s µ-derivatives (i.e. the

set {P 0| P µ�! P 0}) is finite.

We adapt these definitions to a specific process P by considering the LTS TP = hStP ,AP ,

�!P i reachable from P in place of the LTS T .

1.2 Bisimilarity

Bisimulation relations were independently defined in three di↵erent research fields. In

the setting of modal logic, Johan van Benthem introduced them as zigzag relations in his

16 Chapter 1 Behavioral equivalences on nondeterministic processes

1976 PhD Thesis, printed in (van Benthem 1983). In (Milner 1989) Robin Milner defined

bisimilarity, i.e. the equivalence relation induced by bisimulation relations, on Labelled

Transition Systems, in the setting of concurrency theory. Finally, Marco Forti, Furio

Honsell and Peter Aczel (Aczel 1988) proposed the notion of bisimilarity in the setting of

non-well-founded set theory.20

Bisimulations have proved to be a successful tool to capture and to demonstrate the

equivalence of processes: in order to prove that two processes P and Q have the same

behaviour we exhibit a relation including the pair (P,Q) and satisfying the definition of

bisimulation.21

Definition 1.3. Let T = hSt,A ,�!i be an LTS. A relation R ✓ St⇥ St is a bisimu-

lation if P RQ implies:

• for every µ 2 A , P 0 2 St, if P
µ�! P 0 then Q

µ�! Q0 and P 0RQ0, for some Q0 2 St,

• for every µ 2 A , Q0 2 St, if Q
µ�! Q0 then P

µ�! P 0 and P 0RQ0, for some P 0 2 St.

We say that P and Q are bisimilar (P ⇠ Q) if there exists a bisimulation R such that

P RQ. Hence, the bisimilarity relation ⇠ is the union of all the bisimulations on an LTS.

X

X1

X2

X3

a

b

c

Y

Y1

Y2

Y3

Y4

Y6

Y5

a

b b

c c

c

Figure 1.3: Bisimilar processes.

For instance, let us consider the LTS depicted in Figure 1.3. The relation:

{(X,Y), (X1, Y1), (X2, Y2), (X3, Y3), (X2, Y4), (X3, Y5), (X3, Y6)}
20We refer the reader to (Sangiorgi 2012b) for a detailed reconstruction of the origins of bisimulations.
21The validity of the bisimulation proof method rests on the dual of the induction principle: the coin-

duction principle. See (Sangiorgi 2012a).

1.2 Bisimilarity 17

is a bisimulation, thus X and Y are bisimilar.

The reason why we do not want to distinguish the two processes from a behavioral point

of view is that the di↵erent structure they have does not a↵ect their behavior. The process

X only can do a, then b, then c and stop; the same holds for the process Y .

Theorem 1.4. Let T = hSt,A ,�!i be an LTS.

1. ⇠ is an equivalence relation,

2. ⇠ is the largest bisimulation on T .

Proof.

1. We prove that ⇠ is reflexive, symmetric and transitive.

- Let I be the identity relation on the processes in T . I is a bisimulation, for

P
µ�! P 0 implies P

µ�! P 0 and (P 0, P 0) 2 I, and vice versa. Then P ⇠ P holds

for every process P .

- If R is a bisimulation then by switching the two conditions in the definition

of bisimulation we obtain that R�1 = {(P,Q)|QRP} is a bisimulation too.

Therefore, P ⇠ Q implies that Q ⇠ P .

- Suppose that P ⇠ P1 ⇠ P2. Then there are two bisimulation relations R 1 and

R 2 such that P R 1P1 and P1R 2P2. We prove that R 3 = R 1�R 2 = {(P, P2)|
there exists a P1 such that P R 1P1 and P1R 2P2} is a bisimulation relation,

which in turn implies that P ⇠ P2.

Let P R 3P2 and let P
µ�! P 0. Then P1

µ�! P 0
1 and P 0R 1P 0

1, for some P1 such

that P R 1P1R 2P2 and for some P 0
1. We derive from P1R 2P2 that there is a

P 0
2 such that P2

µ�! P 0
2 and P 0

1R 2P 0
2. It follows from the definition of R 3 that

P 0R 3P 0
2. Symmetrically, we have that P R 3P2 and P2

µ�! P 0
2 implies that

P
µ�! P 0 for some P 0 such that P 0R 3P 0

2. Thus, ⇠ is a transitive relation.

2. Let P
µ�! P 0 and P ⇠ Q. Then there is a Q0 such that Q

µ�! Q0 and P 0RQ0,

where R is a bisimulation relating P and Q. Hence, P 0 ⇠ Q0. The second condition

in the definition of bisimulation is analogously satisfied by ⇠, which thereby is a

bisimulation.

Finally, we have that ⇠ is the largest bisimulation on T , since by definition all

bisimulation relations are included in ⇠.

Theorem 1.5 provides a first alternative characterization of bisimilarity.

Theorem 1.5. Let T = hSt,A ,�!i be an LTS. P ⇠ Q if and only if:

18 Chapter 1 Behavioral equivalences on nondeterministic processes

• for every µ 2 A , P 0 2 St, if P
µ�! P 0 then Q

µ�! Q0 and P 0 ⇠ Q0, for some

Q0 2 St,

• for every µ 2 A , Q0 2 St, if Q
µ�! Q0 then P

µ�! P 0 and P 0 ⇠ Q0, for some

P 0 2 St.

Proof. Define the relation ⇠0 such that P ⇠0 Q if and only if:

• for every µ 2 A , P 0 2 St, if P
µ�! P 0 then Q

µ�! Q0 and P 0 ⇠ Q0, for some Q0 2 St,

• for every µ 2 A , Q0 2 St, if Q
µ�! Q0 then P

µ�! P 0 and P 0 ⇠ Q0, for some P 0 2 St.

We prove that ⇠=⇠0.

By Theorem 1.4, ⇠ is a bisimulation. If P ⇠ Q then the two conditions above hold, which

implies that P ⇠0 Q. Therefore, bisimilarity is included in ⇠0.

As for the other direction, we show that ⇠0 is a bisimulation. If P ⇠0 Q and P
µ�! P 0

then Q
µ�! Q0 and P 0 ⇠ Q0, for some Q0 2 St. We proved above that ⇠✓⇠0, so the first

condition in the definition of bisimulation is satisfied. Symmetrically, if Q
µ�! Q0 then

P
µ�! P 0 and P 0 ⇠ Q0, which implies that P 0 ⇠0 Q0.

1.2.1 Approximants of bisimilarity

Under certain conditions it is possible to recover bisimilarity as the intersection of a

decreasing chain of inductively defined relations22. Each of these relations is indexed

by a natural number n, representing the relative degree of approximation of bisimilarity:

the relation ⇠n is the set of those processes which turn out to be bisimilar when only the

states reachable from a process in n steps are checked.

Definition 1.6. Let T = hSt,A ,�!i be an LTS. We define by induction on n 2 N the

sequence of relation ⇠0,⇠1, . . . ,⇠n, . . .:

P ⇠0 Q always holds,

P ⇠n+1 Q if and only if:

• for every µ 2 A , P 0 2 St, if P
µ�! P 0 then Q

µ�! Q0 and P 0 ⇠n Q0, for some

Q0 2 St,

• for every µ 2 A , Q0 2 St, if Q
µ�! Q0 then P

µ�! P 0 and P 0 ⇠n Q0, for some

P 0 2 St.

22The definition of bisimilarity through a stratification of inductively defined relations was given in
(Hennessy and Milner 1985), under the name of observational equivalence.

1.2 Bisimilarity 19

If P ⇠n Q we say that P and Q are n-bisimilar. Let

⇠!=
\

n2N
⇠n .

If P ⇠! Q we say that P and Q are !-bisimilar.

Theorem 1.7. Let T = hSt,A ,�!i be an LTS. If P ⇠ Q then P ⇠n Q for all n 2 N.

Proof. By induction on n.

(n = 0) The result follows from the fact that P ⇠0 Q always holds.

(n+ 1) Bisimilarity is itself a bisimulation (Theorem 1.4), so P ⇠ Q implies that

• for every µ 2 A , P 0 2 St, if P
µ�! P 0 then Q

µ�! Q0 and P 0 ⇠ Q0, for some

Q0 2 St,

• for every µ 2 A , Q0 2 St, if Q
µ�! Q0 then P

µ�! P 0 and P 0 ⇠ Q0, for some

P 0 2 St.

By the inductive hypothesis, P 0 ⇠ Q0 implies P 0 ⇠n Q0 and the result follows from

the definition of ⇠n+1.

Corollary 1.8. Let T = hSt,A ,�!i be an LTS. If P ⇠ Q then P ⇠! Q.

Proof. By definition, !-bisimilarity is the intersection of all n-bisimilarities, for n 2 N.
Then, by Theorem 1.7, !-bisimilarity is coarser than bisimilarity.

The converse of Corollary 1.8 does not hold on arbitrary LTSs. Consider the processes

P and Q in Figure 1.4. We prove by induction on n that P ⇠n Q for all n 2 N, which
implies that P ⇠! Q

The base case always holds, so let us consider the inductive step. If P
a�! P 0 then

P 0 = P 1
k for some k and there exists a Q0 = Q1

k such that Q
a�! Q0 and P 0 ⇠ Q0, being

the relation {(P h
k , Q

h
k)| 1 h k} a bisimulation. It follows from Theorem 1.7 that

P 0 ⇠n Q0. The same holds whenever Q
a�! Q0 and Q0 = Q1

k. Now consider the case when

Q
a�! Q!. The process P reaches P 1

n+1 through an a-labelled transition and we have that

(Pn+1�h
n+1 , Q!) 2⇠h for every h from 0 to n. We show this by induction on h. The base case

(Pn+1
n+1 , Q!) 2⇠0 always holds. For the inductive step, suppose that (Pn+1�h

n+1 , Q!) 2⇠h,

where h < n. If Pn+1�(h+1)
n+1

µ�! P 0 then µ = a and P 0 = Pn+1�h
n+1 . The process Q!

matches this transition by doing Q!
a�! Q!, where (Pn+1�h

n+1 , Q!) 2⇠h. Symmetrically, if

Q! loops over itself through an a-labelled transition then Pn+1�(h+1)
n+1

µ�! Pn+1�h
n+1 , where

20 Chapter 1 Behavioral equivalences on nondeterministic processes

(Pn+1�h
n+1 , Q!) 2⇠h. Hence, P 1

n+1 and Q! are n-bisimilar and the process P is therefore

n+ 1-bisimilar to Q.

Suppose now that P ⇠ Q. Then there is a process P 0 such that P
a�! P 0 and P 0 ⇠ Q!,

that is, there is an n such that P 1
n ⇠ Q!. As a consequence, for every h such that 1 h n

we have that P h
n ⇠ Q!, which is absurd because Pn

n X�! and Q!
a�!. Thus, P and Q are

not bisimilar.

PP 1
1

P 1
2

P 2
2

P 1
3

P 2
3

P 3
3

· · ·

a

a

a

a

a

a

QQ1
1

Q1
2

Q2
2

Q1
3

Q2
3

Q3
3

· · ·

Q!

a

a

a

a

a

a

a

a

Figure 1.4: ⇠! 6✓⇠

We will prove in the following section that a su�cient condition for the converse of Theorem

1.7 to hold is image-finiteness.

1.2.2 Hennessy-Milner Logic

Hennessy-Milner Logic is a modal language introduced in (Hennessy and Milner 1985).

HML allows us to derive an alternative characterization of bisimilarity on image-finite

processes: if P and Q are image-finite processes, then P and Q are bisimilar if and only

if they satisfy all and only the same HML-formulas.

Definition 1.9. Let A be a set of atomic actions. The formulas of Hennessy-Milner

Logic23 (HML) on A are defined as follows:

F ::= >
��� ¬F

��� F1 ^ F2

��� hµ iF
23We present a modal logic equipped with the negation operator, as originally defined in (Hennessy

and Milner 1985). However, the negation operator can be eliminated if the disjunctive formula F1 _ F2,
logically equivalent to the HML- formula ¬(¬F1 ^ ¬F2), and the modality [µ]F , logically equivalent to
the HML-formula ¬hµ i¬F , are added to HML. All the results presented in this section remain valid if we
consider this alternative definition of HML (Aceto et al. 2007).

1.2 Bisimilarity 21

We define by structural induction on HML-formulas when P |= F (“the HML-formula F

is true at the process P” or “the process P satisfies the HML-formula F”):

P |= > always

P |= ¬F i↵ P 6|= F

P |= F1 ^ F2 i↵ P |= F1 and P |= F2

P |= hµ iF i↵ there is a P 0 such that P
µ�! P 0 and P 0 |= F .

P ⌘HML Q if and only if for every HML-formula F , P |= F if and only if Q |= F .

In order to relate the approximants of bisimilarity introduced in the previous section to

the satisfaction of HML-formulas, we associate to every HML-formula its modal degree.

Definition 1.10. Themodal degree (md(F)) of an HML-formula F is defined by structural

induction on F :

md(>) = 0

md(¬F1) = md(F1)

md(F1 ^ F2) = max{md(F1),md(F2)}
md(hµ iF1) = 1 +md(F1).

P ⌘HML
n Q if and only if for every HML-formula F such that md(F) n, P |= F if and

only if Q |= F .

Intuitively, the modal degree of an HML-formula F corresponds to the number of transi-

tions from a process that F can “see”. The following theorem supports this intuition.

Theorem 1.11. Let T = hSt,A ,�!i be an LTS. For every n 2 N, if P ⇠n Q then

P ⌘HML
n Q.

Proof. We prove the result by induction on n. It is easy to check that md(F) 0 implies

that F is logically equivalent to either > or ¬>. Therefore, P ⌘HML
0 Q always holds and

the base case follows.

Suppose now that P ⇠n+1 Q. We prove by structural induction on F that md(F) = n+1

implies that P |= F if and only if Q |= F .

(F = >) md(>) = 0 6= n+ 1, so this case vacuously hold.

(F = ¬F 0) Let md(F) = n+1. Then md(F 0) = md(¬F 0) = n+1. We have that P |= F

if and only if P 6|= F 0 if and only if (by the inductive hypothesis on F 0) Q 6|= F 0 if and

only if Q |= F .

22 Chapter 1 Behavioral equivalences on nondeterministic processes

(F = F1 ^ F2) Analogously to the previous case, md(F) = n+ 1 implies that md(F1) =

md(F2) = md(F1 ^ F2) = n+ 1. Then P |= F1 ^ F2 if and only if P |= F1 and P |= F2

if and only if (by the inductive hypothesis on F1 and F2) Q |= F1 and Q |= F2 if and

only if Q |= F1 ^ F2.

(F = hµ iF 0) Let md(F) = n + 1. Then md(F 0) = md(F) � 1 = n. If P |= hµ iF 0

then there exists a P 0 such that P
µ�! P 0 and P 0 |= F . It follows from the hypothesis

that P and Q are n+ 1-bisimilar that Q
µ�! Q0, for some Q0 such that P 0 ⇠n Q0. By

the inductive hypothesis on n we have that P 0 ⌘HML
n Q. Therefore, Q0 |= F 0, which

implies that Q |= hµ iF 0.

Symmetrically, Q |= hµ iF 0 implies P |= hµ iF 0.

It follows from Theorem 1.11 that !-bisimilar processes satisfy all and only the same

HML-formulas. In the previous section we proved that the processes P and Q in Figure

1.4 are !-bisimilar but not bisimilar processes. As a consequence of Theorem 1.11, there

does not exist an HML-formula which can distinguish P and Q .

A specific feature of the processes in Figure 1.4 is that they can perform infinitely many

di↵erent a-labelled transitions. If we restrict our attention to image-finite LTSs, the rela-

tions ⇠, ⇠! and ⌘HML coincide.

Theorem 1.12. Let T = hSt,A ,�!i be an image-finite LTS. P ⇠ Q if and only if

P ⌘HML Q.

Proof.

()) By Theorem 1.8, bisimilarity implies !-bisimilarity. If P ⇠! Q then P ⇠n Q for all

n 2 N. It follows from Theorem 1.11 that P ⌘HML
n Q for all n 2 N, which implies

that P ⌘HML Q.

(() We prove that ⌘HML is a bisimulation, which in turn implies the result.

Let P ⌘HML Q and P
µ�! P 0. Then hµ i> is true at P and it follows from the

hypothesis of equivalence with respect to HML-formulas that Q |= hµ i>. Hence,

there is at least a process Q0 such that Q
µ�! Q0. Let {Q1, . . . , Qn} be the set Q’s

µ-derivatives, i.e. the set of processes reached by Q through a µ-labelled transition.

By the image-finiteness hypothesis, this set is finite. We prove by contradiction

that there is an i such that 1 i n and P 0 ⌘HML Qi. Suppose not. Then

there exists a formula Fi such that P 0 |= Fi and Qi |= ¬Fi for every i 2 {1, . . . , n}.
Therefore, P |= hµ i(F1 ^ . . . ^ Fn), which implies Q |= hµ i(F1 ^ . . . ^ Fn), by the

hypothesis that P ⌘HML Q. However, Q0 is a Q’s µ-derivative if and only if Q0 = Qi

for some i 2 {1, . . . , n}, and for every i we have that Qi 6|= Fi. As a consequence,

1.3 Why bisimilarity? 23

Q0 6|= (F1^. . .^Fn) for every Q0 such that Q
µ�! Q0. This contradicts the assumption

that Q |= hµ i(F1 ^ . . . ^ Fn).

The proof of the second condition in the definition of bisimulation (i.e. P ⌘HML Q

and Q
µ�! Q0 implies P

µ�! P 0, for some P 0 such that P 0 ⌘HML Q0) is symmetrical.

1.3 Why bisimilarity?

We presented bisimilarity as a suitable definition of behavioral equivalence on processes.

In order to justify this statement, we present a spectrum of equivalences24 , from the

coarser ones to the finer ones.

We start from trace-based equivalences, which compare two processes by considering the

sequences of actions they can perform, and we end with isomorphism between the LTSs

reachable from the processes. For each of these relations, we define a logic which char-

acterizes it and we prove the analogous of the Hennessy-Milner Theorem (Theorem 1.12)

for that specific case.

1.3.1 Trace equivalence

Trace equivalence was first introduced in (Hoare 1980). Every process has a set of traces,

i.e. the set of sequences of atomic actions it can perform, and two processes are equivalent

if their sets of traces coincide.

Definition 1.13. Let T = hSt,A ,�!i be an LTS.

• For any n 2 N, a sequence µ1, . . . , µn of atomic actions is a trace from P if there are

processes P1, . . . , Pn such that:

P
µ1�! P1

µ2�! P2
µ3�! . . .

µn�! Pn.

We let ✏ denote the empty trace and Tr(P) = {�| � is a trace from P}.

• P and Q are trace equivalent (P ⌘Tr Q) if Tr(P) = Tr(Q).

The modal logic for trace equivalence (Trace Logic) is the subset of Hennessy-Milner Logic

whose only operators are the top operator > and the modal operator hµ i.

Definition 1.14. Let A be a set of atomic actions. The formulas of Trace Logic (TL) on

A are defined as follows:

F ::= >
��� hµ iF

24This section draws on (van Glabbeek 2001), which studies a more detailed spectrum than the one here
considered.

24 Chapter 1 Behavioral equivalences on nondeterministic processes

The satisfaction of TL-formulas follows the definition of truth of an HML-formula at a

state (Definiton 1.9):

P |= > always

P |= hµ iF i↵ there is a P 0 such that P
µ�! P 0 and P 0 |= F .

P ⌘TL Q if and only if for every TL-formula F , P |= F if and only if Q |= F .

Lemma 1.15. Let T = hSt,A ,�!i be an LTS. For every n 2 N, for every sequence

µ1, . . . , µn of atomic actions and for every process P ,

(µ1, . . . , µn) 2 Tr(P) if and only if P |= hµ1 i . . . hµn i>.

Proof. By induction on the length n of the sequence µ1, . . . , µn.

(n = 0) The empty trace ✏ always belongs to Tr(P) and > is always true at P .

(n+ 1) If (µ1, . . . , µn+1) is a trace of P then P
µ1�! P1

µ2�! . . .
µn+1�! Pn+1, for some

P1, . . . , Pn+1. By the inductive hypothesis, P1
µ2�! . . .

µn+1�! Pn+1 if and only if P1 |=
hµ2 i . . . hµn+1 i>. It follows from the fact that P

µ1�! P1 that P |= hµ1 i . . . hµn+1 i>.

As for the other direction, suppose that P |= hµ1 i . . . hµn+1 i>. Then there is a P1

such that P
µ1�! P1 and P1 |= hµ2 i . . . hµn+1 i>, which implies P1

µ2�! . . .
µn+1�! Pn+1

by the hypothesis of induction. Therefore, (µ1, . . . , µn+1) 2 Tr(P).

Given a set A of atomic actions, it is immediate to check that F is a TL-formula on A

if and only if F = hµ1 i . . . hµn i>, for some n 2 N and for some µ1, . . . , µn in A . This

allows us to derive from Lemma 1.15 that Trace Logic characterizes trace equivalence.

Theorem 1.16. Let T = hSt,A ,�!i be an LTS. P ⌘Tr Q if and only if P ⌘TL Q.

Proof. For all n 2 N and for all traces µ1, . . . , µn,

P ⌘Tr Q i↵ (µ1, . . . , µn) 2 Tr(P) i↵ (µ1, . . . , µn) 2 Tr(Q)

i↵ P |= hµ1 i . . . hµn i> i↵ Q |= hµ1 i . . . hµn i> (by Lemma 1.15)

i↵ P ⌘TL Q.

The processes P and Q in Figure 1.5 are trace equivalent: Tr(P) = {a, ab} = Tr(Q).

However, P and Q should be di↵erentiated from a behavioral point of view. A b-labelled

action is available every time that P performs an a-labelled action; in contrast, Q does a

and reaches Q1, where b cannot be performed anymore.

1.3 Why bisimilarity? 25

P

P1

P2

a

b

Q

Q3

Q1

Q2

a

b

a

Figure 1.5: Trace equivalent processes.

1.3.2 Completed trace equivalence

Completed trace equivalence can observe whether a trace ends with a deadlock state such

as Q3, a state refusing all actions. Thus, completed trace equivalence discriminates the

processes P and Q in Figure 1.5.

Definition 1.17. Let T = hSt,A ,�!i be an LTS.

• for any n 2 N, a trace µ1, . . . , µn from P is a completed trace from P if there are

processes P1, . . . , Pn such that:

P
µ1�! P1

µ2�! P2
µ3�! . . .

µn�! Pn and Pn X�! .

We let CTr(P) = {�| � is a complete trace from P}.

• P andQ are completed trace equivalent (P ⌘CTr Q) if Tr(P) = Tr(Q) and CTr(P) =

CTr(Q).

The completed traces of the processes P and Q in Figure 1.5 are {ab} and {a, ab}, respec-
tively. Therefore, P 6⌘CTr Q.

Conversely, it directly follows from Definition 1.17 that completed trace equivalence is

included in trace equivalence:

Theorem 1.18. Let T = hSt,A ,�!i be an LTS. If P ⌘CTr Q then P ⌘Tr Q

The clause Tr(P) = Tr(Q) in the definition of completed trace equivalence is required for

Theorem 1.18 to hold. To see this, consider the process P in figure 1.5 and the process Q0

in Figure 1.6. They have the same set of completed traces {ab}, but they do not have the

same set of traces. In fact,

Tr(P) = {a, ab} Tr(Q0) = {a, ab} [{a(c)n|n � 1}

26 Chapter 1 Behavioral equivalences on nondeterministic processes

where (c)n is the sequence consisting of n c-labelled actions.

Q0

Q0
3

Q0
1

Q0
2

a

b

a

c

Figure 1.6: Trace equivalence and completed trace equivalence.

Definition 1.19. Let A be a set of atomic actions. The formulas of Completed Trace

Logic (CTL) on A are defined as follows:

F ::= >
��� 0

��� hµ iF

We obtain the modal logic for completed trace equivalence by adding to TL-formulas the

operator 0, which is true at a state if and only if it is a deadlock state:

P |= > always

P |= 0 i↵ P X�!
P |= hµ iF i↵ there is a P 0 such that P

µ�! P 0 and P 0 |= F .

P ⌘CTL Q if and only if for every CTL-formula F , P |= F if and only if Q |= F .

Lemma 1.20. Let T = hSt,A ,�!i be an image-finite LTS. For every n 2 N, for every

sequence µ1, . . . , µn of atomic actions and for every process P ,

(µ1, . . . , µn) 2 CTr(P) if and only if P |= hµ1 i . . . hµn i0.

Proof. By induction on n.

(n = 0) The empty trace ✏ belongs to CTr(P) if and only if P X�!, which is equivalent

to P |= 0.

(n+ 1) If (µ1, . . . , µn+1) 2 CTr(P) then P
µ1�! P1

µ2�! . . .
µn+1�! Pn+1, for some P1, . . . , Pn+1

such that Pn+1 X�!. By the inductive hypothesis, (µ2, . . . , µn+1) 2 CTr(P1) if and only

if P1 |= hµ2 i . . . hµn+1 i0. Then P |= hµ1 i . . . hµn+1 i0.

1.3 Why bisimilarity? 27

If P |= hµ1 i . . . hµn+1 i0 then P1 |= hµ2 i . . . hµn+1 i0, for some P1 such that P
µ1�! P1.

By the inductive hypothesis, P1
µ2�! P2

µ3�! . . .
µn+1�! Pn+1 for some P3, . . . , Pn+1 such

that Pn+1 X�!. So, (µ1, . . . , µn+1) is a completed trace from P .

Theorem 1.21. Let T = hSt,A ,�!i be an image-finite LTS. P ⌘CTr Q if and only if

P ⌘CTL Q.

Proof. For all n 2 N and for all traces µ1, . . . , µn,

CTr(P) = CTr(Q)

i↵ (µ1, . . . , µn) 2 CTr(P) i↵ (µ1, . . . , µn) 2 CTr(Q)

i↵ P |= hµ1 i . . . hµn i0 i↵ Q |= hµ1 i . . . hµn i0 (by Lemma 1.20).

By Theorem 1.16, Tr(P) = Tr(Q) if and only if P ⌘TL Q. The result follows from the

fact that a CTL-formula F is either a TL-formula or of the form hµ1 i . . . hµn i0, for some

n 2 N and for some µ1, . . . , µn.

We showed above that the processes P and Q in figure 1.5 are not completed trace equiv-

alent. In fact, the formula h a i0 is true at Q and false at P .

Now consider the processes R and T in figure 1.7.

R

R1

R2 R3

a

b c

S

S1

S2

S3

S4

a a

b c

Figure 1.7: Completed trace equivalent processes.

The processes R and S have the same set of traces {a, ab, ac} and the same set of completed

traces {ab, ac}. However, if P performs an a-labelled transition then it is still possible to

choose whether to do b or c. In contrast, the process Q always reaches a state where either

b or c is not available.

1.3.3 Simulation equivalence

Unlike trace-based equivalences, simulation equivalence can observe the branching time of

a process. A simulation relation is obtained by breaking the symmetry of bisimulation; in

28 Chapter 1 Behavioral equivalences on nondeterministic processes

particular, we drop the second clause in the definition of bisimulation.25

Definition 1.22. Let T = hSt,A ,�!i be an LTS. A relation R ✓ St ⇥ St is a

simulation if P RQ implies:

• for every µ 2 A , P 0 2 St, if P
µ�! P 0 then Q

µ�! Q0 and P 0RQ0, for some Q0 2 St.

We say that P is simulated by Q (P . Q) if there is a simulation R such that P RQ. P

and Q are simulation equivalent (P h Q) if P . Q and Q . P .

Theorem 1.23. Let T = hSt,A ,�!i be an LTS.

1. . is a preorder.

2. h is an equivalence relation.

3. . is the largest simulation relation on St.

Proof.

1. We prove that . is reflexive and transitive.

- Let I be the identity relation on the processes in T . If P
µ�! P 0 then P

µ�! P 0

and (P 0, P 0) 2 I. Therefore, I is a simulation, which implies that P . P .

- If P . P1 . P2 then there are two simulation relations R 1 and R 2 such

that P R 1P1 and P1R 2P2. In order to prove that P . P2 we show that

R 3 = R 1 � R 2 = {(P, P2)| there exists a P1 such that P R 1P1 and P1R 2P2}
is a simulation. Let P R 3P2 and let P

µ�! P 0. Then P1
µ�! P 0

1 and P 0R 1P 0
1,

for some P1 such that P R 1P1R 2P2 and for some P 0
1. It follows from P1R 2P2

that there is a P 0
2 such that P2

µ�! P 0
2 and P 0

1R 2P 0
2. Therefore, P 0R 3P 0

2 and

the relation R 3 is a simulation.

2. It follows from the previous point that h is reflexive and transitive. Symmetry is a

direct consequence of the definition of h.

3. Suppose P . Q. Then there is a simulation R such that P RQ. If P
µ�! P 0 then

Q
µ�! Q0 for some Q0 such that P 0RQ0. Therefore, P 0 . Q0 and we can conclude

that . is itself a simulation relation.

If R is a simulation on St then by the definition of . we have that R ✓.. So, the

simulation preorder is also the largest simulation relation on St.

25The notion of simulation in theoretical computer was developed earlier than the notion of bisimulation,
see (Milner 1971) and (Park 1981).

1.3 Why bisimilarity? 29

The processes R and S in Figure 1.7 are completed trace equivalent, but they are not

simulation equivalent.

The relation {(S,R), (S1, R1), (S3, R1), (S2, R2), (S4, R3)} is a simulation relation, thus the

process S is simulated by R. Now suppose that there exists a simulation R such that

RRS. It follows from R
a�! R1 that either R1RS1 or R1RS3, being S1 and S3 the

only states reachable by S through an a-labelled transition. In the first case we have that

R1
c�! R3 but S1

cX�!; in the second one, S3 cannot match the b-labelled transition from

R1. This contradicts the assumption that R ' S.

Lemma 1.24. Let T = hSt,A ,�!i be an LTS. If P . Q and P
µ1�! P1

µ2�! . . .
µn�! Pn

then there are Q1 . . . Qn such that Q
µ1�! Q1

µ2�! . . .
µn�! Qn and Pn . Qn.

Proof. By induction on n 2 N. The base case holds by definition. As for the inductive

step, suppose that P . Q and P
µ1�! . . .

µn+1�! Pn+1. By the inductive hypothesis, there

are Q1 . . . Qn such that Q
µ1�! . . .

µn�! Qn and Pn . Qn. By Theorem 1.23 (point 3), . is

a simulation itself, so it follows from Pn
µn+1�! Pn+1 that Qn

µn+1�! Qn+1 and Pn+1 . Qn+1.

Hence, Q
µ1�! . . .

µn�! Qn
µn+1�! Qn+1 and Pn+1 . Qn+1.

Theorem 1.25. Let T = hSt,A ,�!i be an LTS. If P h Q then P ⌘Tr Q.

Proof. As a consequence of Lemma 1.24, P . Q implies Tr(P) ✓ Tr(Q). The result

follows from the symmetry of h.

By Theorem 1.25, simulation equivalence is included in trace equivalence. The inclusion

is strict: the processes in Figure 1.7 are discriminated under simulation equivalence, but

they are completed trace equivalent and thus trace equivalent.

Definition 1.26. Let A be a set of atomic actions. The formulas of Simulation Logic

(SL) on A are defined as follows:

F ::= >
��� F1 ^ F2

��� hµ iF

Thus, SL is obtained by dropping negation from Hennessy-Milner logic. The semantic of

SL-formulas is inductively defined as follows:

P |= > always

P |= F1 ^ F2 i↵ P |= F1 and P |= F2

P |= hµ iF i↵ there is a P 0 such that P
µ�! P 0 and P 0 |= F .

30 Chapter 1 Behavioral equivalences on nondeterministic processes

P vSL Q if and only if for every SL-formula F , P |= F implies Q |= F .

P ⌘SL Q if P vSL Q and Q vSL P .

Theorem 1.27. Let T = hSt,A ,�!i be an image-finite LTS. P . Q if and only if

P vSL Q.

Proof.

()) We prove by structural induction on F that P . Q implies that for every SL-formula

F , if P |= F then Q |= F . Let P . Q.

(F = >) It always holds that P |= > and Q |= >.

(F = F1 ^ F2) P |= F1 ^ F2 implies P |= F1 and P |= F2. By the inductive

hypothesis, Q |= F1 and Q |= F2. As a consequence, Q |= F1 ^ F2.

(F = hµ iF 0) If P |= hµ iF 0 then there exists a P 0 such that P
µ�! P 0 and P 0 |= F .

It follows from P . Q and from Theorem 1.23 that Q
µ�! Q0 for some Q0 such

that P 0 . Q0. By the inductive hypothesis we have that Q0 |= F 0, which in turn

implies that Q |= hµ iF 0.

(() We prove that vSL is a simulation.

Let P vSL Q and P
µ�! P 0. Then hµ i> is true at P , which implies that Q |=

hµ i>. Hence, the set {Q1, . . . , Qn} of Q’s µ-derivatives is not empty. By the

image-finiteness hypothesis, this set is finite. Suppose that P 0 6vSL Qi for all i 2
{1, . . . , n}. Then there exists a formula Fi such that P 0 |= Fi and Qi 6|= Fi for

every i 2 {1, . . . , n}. Therefore, P |= hµ i(F1 ^ . . . ^ Fn), which implies that Q |=
hµ i(F1 ^ . . . ^ Fn), by the hypothesis that P vSL Q. However, the only states

reachable by Q through a µ-labelled transition are in {Q1, . . . , Qn} and for every i

we have that Qi 6|= Fi. Thus, Q0 6|= (F1 ^ . . . ^ Fn) for every Q0 such that Q
µ�! Q0,

in contradiction with the assumption that Q |= hµ i(F1 ^ . . . ^ Fn).

As a corollary of Theorem 1.27 we have that:

Corollary 1.28. Let T = hSt,A ,�!i be an image-finite LTS. P h Q if and only if

P ⌘SL Q.

We proved above with an argument by contradiction that the process R in Figure 1.7 can-

not be simulated by S. By Corollary 1.28 it su�ces to exhibit the SL-formula h a i(h b i>^
h b i>), which is true at R but false at S.

1.3 Why bisimilarity? 31

Just like trace equivalence, simulation equivalence is insensitive to deadlock. Let us con-

sider again the processes P and R in Figure 1.5. The relation:

{(P,Q), (P1, Q1), (P2, Q2)}

is a simulation, so P ' Q. The other direction holds as well:

{(Q,P), (Q1, P1), (Q2, P2), (Q3, P1)}

is a simulation. We conclude that P and Q are simulation equivalent, even if the first

process never terminates after performing an a-labelled transition, while the second one

does.

1.3.4 Completed simulation equivalence

In Section 1.3.2 we presented completed trace equivalence as a deadlock-sensitive refine-

ment of trace equivalence. Completed simulation equivalence plays the same role with

respect to simulation equivalence.

Definition 1.29. Let T = hSt,A ,�!i be an LTS. A simulation R ✓ St ⇥ St is a

completed simulation if P RQ implies:

• if P X�! then Q X�!.

We say that P is completed simulated by Q (P .c Q) if there is a complete simulation R
such that P RQ. P and Q are completed simulation equivalent (P hc Q) if P .c Q and

Q .c P .

Theorem 1.30. Let T = hSt,A ,�!i be an LTS. If P hc Q then P h Q.

Proof. If P hc Q then there are two completed simulations R 1 and R 2 such that P R 1Q

and QR 2P . By definition, R 1 and R 2 are simulations, so P . Q and Q . P and the

result follows.

The opposite direction of Theorem 1.30 (P h Q implies P hc Q) does not hold.

The processes P and Q in Figure 1.5 are simulation equivalent and it also holds that

P .c Q, for {(P,Q), (P1, Q1), (P2, Q2)} is a completed simulation. Suppose that there

exists a completed simulation relation R such that QRP . It follows from Q
a�! Q3 that

P1 must be in the relation R with Q3, being P1 the only state that P can reach via an

a-labelled transition. Yet, the process Q2 is stopped while P1 can move. This contradicts

the assumption that Q3RP1, so Q cannot be completed simulated by P . Therefore, P

and Q are discriminated under completed simulation equivalence.

Theorem 1.31. Let T = hSt,A ,�!i be an LTS. If P hc Q then P ⌘CTr Q.

32 Chapter 1 Behavioral equivalences on nondeterministic processes

Proof. By Theorem 1.30, if P hc Q then P h Q, which implies by Theorem 1.25 that P

and Q are trace equivalent.

Analogously to Lemma 1.24, it is easy to check that P .c Q and P
µ1�! P1

µ2�! . . .
µn�! Pn

implies that there are processes Q1 . . . Qn such that Q
µ1�! Q1

µ2�! . . .
µn�! Qn and

Pn .c Qn. Therefore, if P
µ1�! P1

µ2�! . . .
µn�! Pn X�! then there are Q1 . . . Qn such that

Q
µ1�! Q1

µ2�! . . .
µn�! Qn and Pn .c Qn, which implies that Qn X�!. So, P .c Q implies

CTr(P) ✓ CTr(Q) and the result follows by the symmetry of hc.

We proved that the processes in Figure 1.7 are not simulation equivalent, so by Theorem

1.30 they are not completed simulation equivalent. However, R and S are completed trace

equivalent, thus by Theorem 1.31 we have that completed simulation equivalence is strictly

finer than completed trace equivalence.

Definition 1.32. Let A be a set of atomic actions. The formulas of Completed Simulation

Logic (CSL) on A are defined as follows:

F ::= >
��� 0

��� F1 ^ F2

��� hµ iF

CSL-formulas are obtained by adding the formula 0 of Completed Trace Logic to the

formulas of Simulation Logic. The truth conditions of these formulas remain unchanged:

P |= > always

P |= 0 i↵ P X�!
P |= F1 ^ F2 i↵ P |= F1 and P |= F2

P |= hµ iF i↵ there is a P 0 such that P
µ�! P 0 and P 0 |= P .

P vCSL Q if and only if for every CSL-formula F , P |= F implies Q |= F .

P ⌘CSL Q if P vCSL Q and Q vCSL P .

Lemma 1.33. Let T = hSt,A ,�!i be an image-finite LTS. P .c Q if and only if

P vCSL Q.

Proof.

()) We prove by structural induction on F that P .c Q implies that for every CSL-

formula F , if P |= F then Q |= F . The proof is analogous to the one of Theorem

1.27 as far as the subset of SL-formulas is concerned, so we only consider the case

when F = 0.

Suppose that P .c Q and let P |= 0. Then P X�! and it follows by the definition of

completed simulation that Q X�!. Therefore, Q |= 0.

1.3 Why bisimilarity? 33

(() We prove that vCSL is a completed simulation.

By using the fact that SL-formulas are a subset of CSL-formulas we can prove

that vCSL is a simulation (Theorem 1.27, right to left direction). Suppose that

P vCSL Q. If P X�! then P |= 0, which implies that Q |= 0. Thus, Q X�! and

vCSL satisfies the specific clause of the definition of completed simulation as well.

It follows from Lemma 1.33 hat completed simulation equivalence coincides with the equiv-

alence on CSL-formulas on image-finite LTSs:

Theorem 1.34. Let T = hSt,A ,�!i be an image-finite LTS. P hc Q if and only if

P ⌘CSL Q.

V

V4

V5

V1

V2 V3

a

b c

a

b

Figure 1.8: A process completed simulation equivalent to R (Fig. 1.7).

Consider the process V in Figure 1.8 and the process R in Figure 1.7. Both the relation:

R 1 = {(R, V), (R1, V1), (R2, V2), (R3, V3)}

and the relation:

R 2 = {(V,R), (V1, R1), (V2, R2), (V3, R3), (V4, R1), (V5, R2)}

are completed simulations. Therefore, R and V are completed simulation equivalent, even

if we can observe a di↵erence in their behavior: every time R performs an a-labelled

transition, both the action b and the action c can be done; if V moves to V4 by doing a,

then c is not available anymore.

1.3.5 Ready simulation equivalence

Completed simulation refines the definition of simulation by allowing us to observe whether

related states are both stopped. Ready simulation further improves the sensitivity of

34 Chapter 1 Behavioral equivalences on nondeterministic processes

simulation relations: related processes are required to have the same set of available atomic

actions they can perform.

Ready simulation equivalence was introduced in (Larsen and Skou 1991) under the name

of 2
3 - bisimilarity; later, it was studied in (Bloom, Istrail, and Meyer 1995) under the name

of GSOS trace congruence.

Definition 1.35. Let T = hSt,A ,�!i be an LTS. A simulation R ✓ St⇥St is a ready

simulation if P RQ implies:

• for every µ 2 A , if P
µX�! then Q

µX�!.

We say that P is ready simulated by Q (P .r Q) if there is a ready simulation R such

that P RQ. P and Q are ready simulation equivalent (P hr Q) if P .r Q and Q .r P .

The process V in Figure 1.8 is not ready simulated by the process R in Figure 1.7. Suppose

that this is false, that is, suppose that there is a ready simulation relation R such that

V RR. The process V reaches V4 by performing an a-labelled transition and R1 is the only

state such that R
a�! R1, so V4 must be in the relation R with R1. However, the process

V4 cannot perform a c-labelled transition, while R1
c�!. This contradicts the assumption

that there exists a ready simulation R such that V RR.

Conversely, ready simulation equivalence is included in completed simulation equivalence.

Theorem 1.36. Let T = hSt,A ,�!i be an LTS. If P hr Q then P hc Q.

Proof. If P .r Q then there is a ready simulation R such that P RQ. If P X�! then

P
µX�! for every atomic action µ. By the definition of ready simulation, Q

µX�! for every

µ, that is, Q X�!. Thus, R is also a completed simulation.

Definition 1.37. Let A be a set of atomic actions. The formulas of Ready Simulation

Logic (RSL) on A are defined as follows:

F ::= >
��� ¬µ

��� F1 ^ F2

��� hµ iF

Ready Simulation Logic adds the negation operator to the ones of SL. However, only a

restricted use of ¬ is allowed, i.e. it is only possible to negate the possibility of performing

an atomic action. In fact, the formula ¬µ is semantically equivalent to the HML-formula

¬hµ i>.

P |= > always

P |= ¬µ i↵ P
µX�!

P |= F1 ^ F2 i↵ P |= F1 and P |= F2

P |= hµ iF i↵ there is a P 0 such that P
µ�! P 0 and P 0 |= F .

1.3 Why bisimilarity? 35

P vRSL Q if and only if for every RSL-formula F , P |= F implies Q |= F .

P ⌘RSL Q if P vRSL Q and Q vRSL P .

Theorem 1.38. Let T = hSt,A ,�!i be an image-finite LTS. P .r Q if and only if

P vRSL Q.

Proof.

()) The proof is by structural induction on F and it is analogous to the one of Theorem

1.27, as far as the formulas of Simulation Logic are concerned. Now consider the

case when F = ¬µ. If P .c Q and P |= ¬µ then P
µX�!. By the definition of ready

simulation we have that Q
µX�!, which implies that Q |= ¬µ.

(() We prove that vCSL is a ready simulation.

vRSL is a simulation, being the SL-formulas included in RSL-formulas (see Theorem

1.27, right-to-left direction). If P vRSL Q and P
µX�! then P |= ¬µ. Therefore,

Q |= ¬µ, which is equivalent to Q X�!. So we can conclude that vRSL is a ready

simulation.

Let us consider again the processes R and V in Figure 1.7 and in Figure 1.8, respectively.

We proved that V 6'r R. In fact, the RSL-formula h a i¬c is true at V and false at R.

As a consequence of Theorem 1.38, ready simulation equivalence and the equivalence on

RSL-formulas coincide.

Corollary 1.39. Let T = hSt,A ,�!i be an image-finite LTS. P hr Q if and only if

P ⌘RSL Q.

Ready simulation equivalence fails to distinguish the two processes in Figure 1.9. The

relations:

R 1 = {(T, U), (T1, U1), (T2, U2), (T3, U3), (T4, U4), (T5, U5)}
R 2 = {(U, T), (U1, T1), (U2, T2), (U3, T3), (U4, T4), (U5, T5), (U6, T1), (U7, T2), (U8, T3)}

are ready simulations, hence T .r U and U .r T .

1.3.6 Bisimilarity and isomorphism

We can look at bisimilarity as the last refinement of simulation equivalence. It is easy to

check that a relation R is a bisimulation if and only if both R and R�1 = {(P,Q)|QRP}
are simulations. This requirement allows bisimilarity to distinguish the two processes in

Figure 1.9. The process T satisfies the HML-formula [a]h b ih d i>, while U does not; by

36 Chapter 1 Behavioral equivalences on nondeterministic processes

T

T1

T2

T3

T4

T5

a

b b

c d

U

U6

U7

U8

U1

U2

U3

U4

U5

a

b b

c d

a

b

c

Figure 1.9: Ready simulation equivalent processes.

Theorem 1.12, T and U are not bisimilar.

Conversely, bisimilarity implies ready simulation equivalence.

Theorem 1.40. Let T = hSt,A ,�!i be an LTS. If P ⇠ Q then P 'r Q.

Proof. If P ⇠ Q then there is a bisimulation R such that P RQ. Both R and R�1 are

simulation relations, therefore P 0 µ�! if and only if Q0 µ�!, for every P 0, Q0 such that

P 0RQ0. As a consequence, both R and R�1 are ready simulation relations.

To show that bisimilarity is not an over-discriminating equivalence relation on processes,

we prove that isomorphism on graphs is strictly included in bisimilarity.

Definition 1.41. Let T = hSt,A ,�!i be an LTS and let P and Q be processes in T .

A function f : StP ! StQ is an isomorphism between P and Q if:

• f is a bijection,

• f(P) = Q,

• P 0 µ�! P 00 if and only if f(P 0)
µ�! f(P 00), for every µ and for all processes P 0, P 00

reachable from P .

We say that P and Q are isomorphic (P ⇠= Q) if there is an isomorphism f between P

and Q.

Theorem 1.42. Let T = hSt,A ,�!i be an LTS. If P ⇠= Q then P ⇠ Q.

Proof. We prove that ⇠= is a bisimulation.

Suppose that P ⇠= Q. Then there is an isomorphism f such that f(P) = Q. If P
µ�! P 0

1.4 A Calculus of Communicating Systems 37

then there is a Q0 such that Q = f(P)
µ�! f(P 0) = Q0. Let f 0 : StP 0 ! StQ0 be the

restriction of f to the LTS reachable from P 0. The function f 0 is an isomorphism between

P 0 and Q0:

• the graph of f 0 is included into the graph of f , so the bijectivity of f implies the

bijectivity of f 0,

• f 0(P 0) = Q0,

• for every µ and for all processes P 00, P 000 reachable from P 0, P 00 µ�! P 000 if and only

if f(P 00)
µ�! f(P 000) if and only if f 0(P 00)

µ�! f 0(P 000).

Hence, P 0 ⇠= Q0.

The function f is a bijection, so Q
µ�! Q0 implies that Q0 = f(P 0) for some P 0 2 StP .

Then Q
µ�! Q0 if and only if f(P)

µ�! f(P 0) if and only if P
µ�! P 0. As above, the

restriction of f to the LTS reachable from P 0 is an isomorphism, so P 0 ⇠= Q0 and the

second condition in the definition of bisimulation holds as well.

We proved that the processes X and Y in Figure 1.3 are bisimilar: although some dif-

ferences between their structures, they have the same behavior. However, X and Y are

not isomorphic: the LTS reachable from the first process has less states than the LTS

reachable from the second one, so there cannot be any bijection between X and Y .

1.3.7 The spectrum of equivalences

Figure 1.10 summarizes the results presented in this chapter. An arrow from a relation to

another one means that the former is included in the latter; the arrows are labelled with the

number of the theorem proving the inclusion. All these implications between equivalence

relations on processes are strict, as the counterexamples provided in the previous sections

showed.

1.4 A Calculus of Communicating Systems

The process calculus CCS (Calculus of Communicating Systems) is a language whose terms

represent the behavior of concurrent programs. CCS was first introduced in (Milner 1980)

and its theory was further developed in (Milner 1989).26

One and only one LTS is associated to every term of CCS by means of an operational

semantic (Plotkin 2004b, Plotkin 2004a), a syntax-driven semantic defined by the rules

of the calculus. Every operator of CCS has its own (possibly empty) set of axioms or

inference rules, which allow us to derive the transitions from a term to its subterms.

26We present here a slightly modified version of the original CCS, following the lines of (Sangiorgi 2012a).

38 Chapter 1 Behavioral equivalences on nondeterministic processes

Trace equivalence

Simulation equivalenceCompleted trace equivalence

Completed simulation equivalence

Ready simulation equivalence

Bisimilarity

Isomorphism

Thm 1.42

Thm 1.40

Thm 1.36

Thm 1.31 Thm 1.30

Thm 1.18 Thm 1.25

Figure 1.10: The spectrum of equivalences.

Hence, the semantic of CCS gives rise to an huge LTS, whose set of states is exactly the

set of CCS-terms.

Let N be a set of atomic actions.

- N is the set of its complementary names (or conames), i.e. the set {ā| a 2 N }
where a = ¯̄a,

- A = N [N .

The set N is interpreted as the set of actions that programs may take as input, while N

1.4 A Calculus of Communicating Systems 39

is the set of their complementary output actions. We let a, b, c . . . denote input actions

and ā, b̄, c̄, . . . denote output actions, where a = ¯̄a. We use ↵,�, . . . to range over A , where

↵ = ¯̄↵.

CCS features operators that allows us to describe the evolution of a nondeterministic

system whose possible inputs and outputs are in A .

The terms of CCS on N are defined by the following grammar:

P ::= 0
��� ↵.P

��� P1 + P2

��� P1 |P2

��� (⌫a)P
��� A

where A is a constant (we suppose to have at our disposal infinitely many names for

constants).

(pref)
↵.P

↵�! P

P1
µ�! P 0

1
(sumL)

P1 + P2
µ�! P 0

1

P2
µ�! P 0

2
(sumR)

P1 + P2
µ�! P 0

2

P1
µ�! P 0

1
(parL)

P1 |P2
µ�! P 0

1 |P2

P2
µ�! P 0

2
(parR)

P1 |P2
µ�! P1 |P 0

2

P1
↵�! P 0

1 P2
↵̄�! P 0

2
(sync)

P1 |P2
⌧�! P 0

1 |P 0
2

P
µ�! P 0

(res)a 6=µ 6=ā

(⌫a)P
µ�! P 0

P
µ�! P 0

(cons)
A

def
= P

A
µ�! P 0

Figure 1.11: SOS for processes in CCS.

The operational semantic of CCS on N is defined by the LTS hCCS-terms,A [{⌧},�!i,
where the transition relation �! is given by the rules in Figure 1.11 and ⌧ is a fresh name

of action. Let us briefly describe the operators of CCS.

The first operator is the nil operator 0, representing a terminated process. The process 0

cannot move, which is the reason why there are no rules for it in the operational semantic

40 Chapter 1 Behavioral equivalences on nondeterministic processes

of CCS.

The prefix operator allows us to capture labelled state transitions. Given an input or

output atomic action ↵ and a process P , the process ↵.P is the process that sequentially

performs a transition labelled with the prefix ↵ and becomes the process P . The rule for

prefixing is actually an axiom, named (pref).

The third operator of CCS is the sum (or nondeterministic choice) operator +. The process

P1+P2 is the process which nondeterministically behaves either as P1 or as P2. The rules

(sumL) and (sumR) describe the first and the second case, respectively. The prefix and

sum operators are so called dynamic operators, for they disappear in the right-hand side

of the relative rules’ conclusion. Conversely, the parallel operator | and the restriction

operator (⌫a) are not “lost after use”, so they are said to be static operators.

The process P1 |P2 is the parallel composition of the processes P1 and P2. When two

processes are executed in parallel we can have two di↵erent cases:

• the process P1 (respectively: P2) performs a transition labelled with an input or

output atomic action and P1 |P2 evolves into a process which is the parallel com-

position of the derivative of P1 (respectively: the process P1) and the process P2

(respectively: the derivative of P2);

• the two processes perform complementary input-output actions which synchronize.

In this case, P1 |P2 evolves into a process which is the parallel composition of P1’s

continuation and P2’s continuation. The synchronization give rise to an internal

state transition, labelled with ⌧ .

The first case represents P1’s (respectively: P2’s) possibility of performing its own transi-

tions, so to communicate with external processes, without a↵ecting the parallel structure

of the system. The second one represent the two components’ interaction with each other,

provided that they are capable of performing complementary actions.

Given a process P and an atomic action a 2 N , the restriction (⌫a)P stops the exe-

cution of a state transition labelled with a or ā. As a consequence, if P = P1 |P2 then

the restriction on a forces the synchronization between P1 and P2, in case one of them

requires the input a and the other one o↵ers the complementary output ā. Restriction

on an atomic action aims at representing private communication between the restricted

processes: acting as a binder on a and ā, these input-output actions only are available for

synchronization, since they only are observable to processes under the scope of (⌫a).

The last construct of CCS is the constant. We assume that there is a countably infinite

set of constant names, ranged over by A,B,C, . . . and that every constant is defined by

1.4 A Calculus of Communicating Systems 41

an equation of the form A = P , where P is a CCS process.27 Constants allow us to define

CCS-terms with an infinitary behavior (such as processes that can reach infinitely many

states and processes with loops, as illustrated below), by admitting recursive definitions

of constants.

For notational convenience, we adopt the following order of precedence among the opera-

tors of CCS: restriction > prefix > parallel composition > sum.

a.(b.0+ c.d̄.0)

b.0+ c.d̄.0

0 d̄.0

a

b c

d̄

Figure 1.12: The process a.(b.0+ c.d̄.0).

For instance, consider the process a.(b.0 + c.d̄.0) in Figure 1.12. By the axiom (pref) we

have that a.(b.0+ c.d̄.0) performs an a-labelled transition to b.0+ c.d̄.0. We derive from

the axiom (pref) and the two symmetric rules for sum that:

(pref)
b.0

b�! 0
(sumL)

b.0+ c.d̄.0
b�! 0

(pref)
c.d̄.0

c�! 0
(sumR)

b.0+ c.d̄.0
b�! d̄.0

Finally, by the axiom (pref) we have that d̄.0
d̄�! 0.

Figure 1.13 represents the LTSs associated to some other CCS-processes.

CCS provides an elegant axiomatization of bisimilarity on finite processes (Sangiorgi 2012a)

and finite-state processes (Milner 1989).28 The soundness of these axiomatizations follows

27For technical reasons, we restrict our attention to processes where both sums and constants are guarded.
A sum is guarded if the summed processes are either processes of the form ↵.P or guarded sums themselves.
So, CCS processes can be alternatively described by the following grammar:

P ::=
X

i

↵.Pi

��� P1 |P2

��� (⌫a)P
��� K

where the empty sum denotes the process 0 and the sum of a single element is a prefixed process ↵.P .
An occurrence of a constant in a process is guarded when it occurs within a subterm of the form ↵.P . A
constant A = P is guarded if any occurrence of a constant (A included) in P is guarded.
For instance, the defining equations of unguarded constants do not always have an unique solution (Milner
1983) and the process represented by a guarded constant is image-finite (Baeten 1990).

28Bisimilarity is undecidable on arbitrary processes and it has no axiomatizations (Aceto, Ingólfsdóttir,
and Srba 2012).

42 Chapter 1 Behavioral equivalences on nondeterministic processes

a.0 | ā.b.0

a.0 | b.0

a.0 |0

0 | ā.b.0

0 | b.0

0 |0

a ā

b
aā

b
a

⌧

(⌫a)(a.0 | ā.b.0)

(⌫a)(0 | b.0)

(⌫a)(0 |0)

b

⌧

A
def
= a.A

A

a

B0
def
= b.B1

Bn+1
def
= b.Bn+2 + c.Bn

B0

B1

B2...

b

b

c

c

Figure 1.13: Some CCS processes.

from the fact that bisimilarity is a congruence with respect to the operators of CCS.

Moreover, CCS is a Turing-complete language (Milner 1989, Gorrieri 2013): for every

Turing Machine there is a CCS-term encoding it.29

29In this thesis we will not be concerned with these results, so we omit the proofs and refer the reader
to the cited works.

Chapter 2

Probabilistic processes

This chapter analyzes a refinement of Labelled Transition Systems: probabilistic Labelled

Transition Systems. In Section 2.2 we define probabilistic bisimilarity, a form of bisimi-

larity taking into account a state’s probability of reaching other states.

We focus our attention on a subset of probabilistic processes, the so-called probabilistic

reactive processes. Probabilistic Modal Logic (Section 2.2.3) allows us to capture proba-

bilistic bisimilarity on probabilistic reactive processes.

We conclude this chapter by illustrating a testing scenario for probabilistic processes due

to Kim G. Larsen and Arne Skou (Larsen and Skou 1991).

2.1 Probabilistic Labelled Transition Systems

Probabilistic Labelled Transition Systems are obtained by adding to Labelled Transition

Systems a quantitative information, namely the probability of performing certain transi-

tions. In the literature, a great variety of probabilistic refinements of Labelled Transition

Systems has been proposed.30

The transition relation of a Labelled Transition System was defined in the previous chap-

ter as a binary relation on states; in this section, we define Labelled Transition Systems

whose transitions are from states to probability distributions on states. Before provid-

ing the formal definition of a probabilistic Labelled Transition System, we recall a few

preliminary notions about probability distributions.

Let S be a set and let � be a function from S to [0, 1]. The support of � is the set

d�e = {s 2 S| �(s) > 0}. We say that � is a (discrete probability) distribution on

S if
P

s2d�e�(s) = 1. We use D(S) to denote the set of all distributions on S. Given

30We refer the reader to (Sokolova and Vink 2004) for a detailed comparison of this variety of probabilistic
structures. In (Bernardo, De Nicola, and Loreti 2013a) the ULTraS model, a uniform framework for
modeling various refinements of Labelled Transition Systems, is introduced.

43

44 Chapter 2 Probabilistic processes

a distribution � on S and a set S0 ✓ S, we extend � to the powerset of S by letting

�(S0) =
P{�(s)| s 2 S0}. Let �1, ...,�n be distributions on S and let p1, ..., pn be a

collection of positive real numbers such that
Pn

i=1 pi = 1. We define the distribution
Pn

i=1 pi ⇥�i as follows:

(
nX

i=1

pi ⇥�i)(s) =
nX

i=1

pi ⇥�i(s).

A Dirac distribution is a probability distribution assigning 1 to a single element of S. We

write s to denote the Dirac probability distribution such that:

s(s0) =

8
<

:
1 if s = s0

0 else.

We often write probability distributions as sums of probability values applied to Dirac

distributions. For instance, the distribution

� =
1

2
· s0 + 1

4
· s00 + 1

4
· s000

behaves as follows:

�(s) =

8
>>>>>><

>>>>>>:

1
2 if s = s0

1
4 if s = s00

1
4 if s = s000

0 else.

Definition 2.1. A probabilistic Labelled Transition System (pLTS) is a tuple T =

hSt,A ,�!i where:

- St is a non-empty set of states or probabilistic processes,

- A is a set of atomic actions,

- �!✓ St⇥A ⇥D(St) is a labelled transition relation between states and distributions

on states.

Analogously to what we did in the previous chapter, we use P,Q,R, S... (and their indexed

variants P1, P2 . . . , R1, R2, . . .) to range over probabilistic processes and µ (and its indexed

variants µ1, µ2 . . .) to range over A , whose elements are denoted by a, b, c,

For instance, the PLTS in Figure 2.1 represents the tuple T = hSt,A ,�!i, where:

St ={P, P1, P2, P3, P4, P5, P6}
A ={a, b, c}

2.1 Probabilistic Labelled Transition Systems 45

P

�

P1

P2

P3

�2

P5

�3

P6

�1 P4

a

c
c

b

1
2

1
4

1
4

1

1
3

2
3

1

Figure 2.1: A pLTS.

�!={(P, a,�), (P, b,�1), (P3, c,�2), (P3, c,�3)}

and the probability distributions �,�1,�2,�3 are defined as follows:

� =
1

2
· P1 +

1

4
· P2 +

1

4
· P3 �1 = P4

�2 = P5 �3 =
1

3
· P6 +

2

3
· P3

Given a pLTS T = hSt,A ,�!i, we write:

• P
µ�! � whenever (P, µ,�) 2�!,

• P
µX�! � if (P, µ,�) 62�!,

• P
µX�! if P

µX�! � for all distributions �,

• P X�! if P
µX�! for all atomic actions µ.

Sometimes we will assume, mainly for technical reasons, that a pLTS satisfies one of the

properties listed below. Let T = hSt,A ,�!i be a pLTS.

T satisfies the minimal probability assumption if there exists a minimal probability value

⇡ 2 (0, 1] such that if P
µ�! � then �(P 0) 6= 0 implies �(P 0) � ⇡, for all proba-

bilistic processes P, P 0 and for every µ.

46 Chapter 2 Probabilistic processes

T satisfies the minimal deviation assumption if there exists a minimal probability value

⇡ 2 (0, 1] such that if P
µ�! � then for some n 2 N, �(P 0) = n·⇡, for all probabilistic

processes P, P 0 and for every µ.

It is easy to check that if a pLTS satisfies the minimal probability assumption then the

support of every distribution reachable from a state in the pLTS is finite. The minimal

deviation assumption implies the minimal probability assumption: if P
µ�! � implies that

�(P 0) = n · ⇡ for some n 2 N, for all P, P 0 and for every µ, then P
µ�! � and �(P 0) 6= 0

implies that �(P 0) � ⇡, for all P, P 0 and for every µ.

Fully nondeterministic processes (i.e. Labelled Transition Systems) are themselves repre-

sentable as a subclass of probabilistic Labelled Transition Systems, namely the subclass

of those probabilistic processes reaching only Dirac distributions.

A probabilistic Labelled Transition Systems can exhibit both external and internal non-

determinism. In the first case, there is a state performing more than one transition, and

these transitions have di↵erent labels; in the second one, there are multiple transitions with

the same label leaving the same state. Reactive probabilistic Labelled Transition Systems

compose the subclass of those probabilistic Labelled Transition Systems that only have

external nondeterminism.

Definition 2.2. A pLTS T = hSt,A ,�!i is a reactive pLTS if

P
µ�! �1 and P

µ�! �2 implies �1 = �2

for all P , µ and �1,�2 2 D(St).

We say that P is a probabilistic process (respectively: a reactive probabilistic process) if

P is a state of a pLTS (respectively: a state of a reactive pLTS).

In the field of concurrency theory,31 reactive probabilistic processes were first studied in

(Larsen and Skou 1991) and (van Glabbeek et al. 1990).32 As we mentioned above, we can

look at reactive probabilistic processes as to a first refinement of nondeterministic processes

where internal choices are equipped with specific probability values. For instance, consider

the fully nondeterministic process V represented in Figure 1.8 and suppose that we come

to know that when performing an a-labelled transition the process V becomes one half of

the times the process V1 and one half of the times the process V2. Then we represent V

as the reactive probabilistic process in Figure 2.2.

31Reactive probabilistic processes are the counterparts in concurrency theory of structures known in
probability theory as reward-free Markov decision processes (Puterman 1994).

32This work was extender further in (van Glabbeek, Smolka, and Ste↵en 1995).

2.2 Probabilistic bisimilarity 47

V

�

V4

�3

V5

V1

�1

V2

�2

V3

a

b c b

1
2

1
2

1 1 1

Figure 2.2: A reactive probabilistic process.

2.2 Probabilistic bisimilarity

Di↵erent notions of probabilistic bisimilarity appear in the literature.33 In Section 2.2.1 we

define probabilistic bisimulation as presented in (Segala and Lynch 1994, Segala and Lynch

1995) under the name of “strong bisimilarity”.34 As pointed out in (Deng and Du 2011),

there are several possible alternative characterizations of this probabilistic bisimilarity. In

the following section we use a characterization based on the lifting of binary relations from

states to probability distributions on states.

2.2.1 Probabilistic bisimilarity through lifted relations

Definition 2.3. Let T = hSt,A ,�!i be a pLTS and let R ✓ St ⇥ St. We lift it to

a relation R between distributions on probabilistic processes by letting �R⇥ whenever

there is a finite index set I such that:

1. � =
P

i2I pi · Pi and
P

i2I pi = 1,

2. for every i 2 I there is a probabilistic process Qi such that PiRQi,

33We refer the reader to (Hennessy 2012) for a comparison of various definitions of bisimulations in the
probabilistic setting. In (Parma and Segala 2007) and (Hermanns et al. 2011), both the characterization
through approximants and the logical characterization of probabilistic bisimilarities are analyzed.

34In these works, Roberto Segala and Nancy Lynch also define a probabilistic version of simulation
equivalence. Di↵erently from what we did with respect to fully nondeterministic processes, we do not
examine the spectrum of equivalences for probabilistic processes. This spectrum is studied in (Bernardo,
De Nicola, and Loreti 2013d) and (Bernardo, De Nicola, and Loreti 2013b).

48 Chapter 2 Probabilistic processes

3. ⇥ =
P

i2I pi ·Qi.

We say that the relation R is the lifting of R .

Definition 2.4. Let T = hSt,A ,�!i be a pLTS. A relation R ✓ St⇥St is a probabilistic

bisimulation if whenever P RQ:

• for every µ 2 A and for every � 2 D(St), if P
µ�! � then Q

µ�! ⇥ and �R⇥, for

some distribution ⇥ 2 D(St),

• for every µ 2 A , ⇥ 2 D(St), if Q
µ�! ⇥ then P

µ�! � and �R⇥, for some

distribution � 2 D(St).

P and Q are probabilistically bisimilar (written P ⇠ Q) if there exists a probabilistic

bisimulation R such that P RQ.

The following lemma is from (Deng and Du 2007) and it is useful for the proof of Theorem

2.6. It states that the composition of the liftings of two binary relations is included in the

lifting of the composition of the two relations.

Lemma 2.5. Let S be a set and let R 1 and R 2 be binary relations on S. If �R 1�1

and �1R�2 then �R 1 � R 2�2, for all distributions �,�1,�2 on S.

Proof. If �R 1�1 and �1R�2 then there are two finite index sets I, J such that:

� =
X

i2I
pi · si and �1 =

X

i2I
pi · s0i , where siR 1s

0
i for all i 2 I

�1 =
X

j2J
qj · t0j and �2 =

X

j2J
qj · t00j , where t0j R 2t

00
j for all j 2 J

Let Ji = {j 2 J | t0j = s0i} and Ij = {i 2 I| s0i = t0j} for every i 2 I and for every j 2 J ,

respectively. The sets {(i, j)| i 2 I, j 2 Ji} and {(i, j)| j 2 J, i 2 Ij} coincide and we have

that:

(⇤) �1(s
0
i) =

X

j2Ji

qj and �1(t
0
j) =

X

i2Ij

pi

Thus,

� =
X

i2I
pi · si =

=
X

i2I
pi ·

P
j2Ji qj

�1(s0i)
· si = (by (*))

=
X

i2I

X

j2Ji

pi · qj
�1(s0i)

· si =

2.2 Probabilistic bisimilarity 49

=
X

{(i,j)| i2I,j2Ji}

pi · qj
�1(s0i)

· si

and

�2 =
X

j2J
qj · t00j =

=
X

j2J
qj ·

P
i2Ij pi

�1(t0j)
· t00j = (by (*))

=
X

j2J

X

i2Ij

pi · qj
�1(t0j)

· t00j =

=
X

{(i,j)| j2J,i2Ij}

pi · qj
�1(t0j)

· t00j =

=
X

{(i,j)| i2I,j2Ji}

pi · qj
�1(t0j)

· t00j =

=
X

{(i,j)| i2I,j2Ji}

pi · qj
�1(s0i)

· t00j .

By definition, for every (i, j) 2 {(i, j)| i 2 I, j 2 Ji} we have that siR 1s0i = t0j R 2t00j , so

�R 1 � R 2�2.

We can now prove that probabilistic bisimilarity actually is an equivalence relation on

probabilistic processes. Moreover, probabilistic bisimilarity is itself a probabilistic bisimu-

lation and it is the largest probabilistic bisimulation as well, since probabilistic bisimilarity

includes all probabilistic bisimulations.

Theorem 2.6. Let T = hSt,A ,�!i be a pLTS.

(1) ⇠ is a an equivalence relation,

(2) ⇠ is the largest probabilistic bisimulation on St.

Proof.

(1) We prove that ⇠ is reflexive, symmetric and transitive.

- The identity relation I on the processes in T is a probabilistic bisimulation: if

P
µ�! � and � =

P
i2I pi · Pi then P

µ�! � =
P

i2I pi · Pi and (�,�) is in

the lifting of the relation I, and vice versa.

- The inverse relation R�1 of a probabilistic bisimulation is itself a probabilistic

bisimulation.

- Suppose that P R 1P1 and P1R 2P2, where R 1 and R 2 are probabilistic bisim-

ulations. If P
µ�! � then there is a distribution �1 such that P1 reaches �1 by

50 Chapter 2 Probabilistic processes

performing a µ-labelled transition and �R 1�1. It follows from P1
µ�! �1 and

P1R 2P2 that P2 can perform a µ-labelled transition to a distribution �2 such

that �1R 2�2. By Lemma 2.5, �R 1 � R 2�2, so R 1 � R 2 is a probabilistic

bisimulation and the result follows.

(2) Let P
µ�! � and P ⇠ Q. Then there is a relation R such that R is a probabilistic

bisimulation and P RQ and �R⇥, for some distribution ⇥ such that Q
µ�! ⇥. If

�R⇥ then there is a finite index set I such that� =
P

i2I pi·Pi and⇥ =
P

i2I pi·Qi,

where PiRQi for all i 2 I. If PiRQi then Pi ⇠ Qi, so �⇠⇥. The second condition

in the definition of probabilistic bisimulation is symmetrically satisfied by ⇠, thus

⇠ is a probabilistic bisimulation.

Probabilistic bisimilarity is also the largest probabilistic bisimulation, for all proba-

bilistic bisimulations are included in ⇠.

2.2.2 Probabilistic bisimilarity on reactive probabilistic processes

If we restrict our attention to reactive probabilistic processes, it is possible to define

probabilistic bisimilarity by considering an equivalence relation from the very beginning

and by comparing the equivalence classes induced by this relation. This is the approach

that was originally proposed in (Larsen and Skou 1991) for reactive probabilistic Labelled

Transition Systems.35

Definition 2.7. Let T = hSt,A ,�!i be a pLTS. An equivalence relation R ✓ St⇥ St

is an ls-probabilistic bisimulation if whenever P RQ:

• for every µ 2 A and for every � 2 D(St), if P
µ�! � then there is a distribution ⇥

such that Q
µ�! ⇥ and �(E) = ⇥(E), for every equivalence class E in St/R .

P andQ are ls-probabilistically bisimilar (written P ⇠ls Q) if there exists an ls-probabilistic

bisimulation R such that P RQ.

Theorem 2.8 proves that probabilistic bisimilarity and ls-probabilistic bisimilarity coincide

on the class of reactive probabilistic processes.

Theorem 2.8. Let T = hSt,A ,�!i be a reactive pLTS. P ⇠ Q if and only if P ⇠ls Q.

Proof.

35Due to the lack of internal nondeterminism, probabilistic bisimilarity on reactive probabilistic processes
coincides with probabilistic simulation equivalence. This result was proved in (Baier and Kwiatkowska
2000) and (Desharnais et al. 2003).

2.2 Probabilistic bisimilarity 51

()) We show that ⇠ is an ls-probabilistic bisimulation. By Theorem 2.6, ⇠ is an equiv-

alence relation. If P
µ�! � then there is a ⇥ such that Q

µ�! ⇥ and �R⇥, i.e.

there is a finite index set I such that � =
P

i2I pi ·Pi, ⇥ =
P

i2I pi ·Qi and PiRQi

for every i 2 I.

Let E be an equivalence class in St/⇠ and let K be the subset of I whose elements

are all and only the indexes of processes in E \ d�e. By the hypothesis, PiRQi for

every i 2 I, hence ⇥(E) � P
k2K pk = �(E). Now, suppose that ⇥(E) >

P
k2K pk.

Then there is a j 2 I \ K such that Qj 2 E and it follows from Pj ⇠ Qj that

Pj 2 E, which contradicts the assumption that {Pi| i 2 K} = E \ d�e. Therefore,

⇥(E) =
P

k2K pk = �(E).

(() We prove that if an equivalence relation R is an ls-probabilistic bisimulation then

R is a probabilistic bisimulation, i.e. we prove that if P
µ�! � then there is a ⇥

such that Q
µ�! ⇥ and �R⇥. The second condition in the definition of ⇠ follows

from the fact that R is a symmetric relation.

Let R be an ls-probabilistic bisimulation. Suppose that P RQ and P
µ�! �.

Then there is a ⇥ such that Q
µ�! ⇥ and for every equivalence class E 2 St/R ,

�(E) = ⇥(E). Define the index set

I = {(S, T)| SRT and S 2 d�e and T 2 d⇥e},

which is finite, both d�e and d⇥e being finite. Let p(s,t) =
�(S)·⇥(T)

�([S]) ; it follows from

the hypothesis that for every couple (S, T), p(s,t) =
�(S)·⇥(T)

�([T]) . For every (S, T) 2 I,

let l(S,T) = S and r(S,T) = T . We prove that the following distributions on St:

�0 =
X

(S,T)2I

p(s,t) · l(S,T) ⇥0 =
X

(S,T)2I

p(s,t) · r(S,T)

are equivalent to � and ⇥, respectively. Let S0 2 d�e. Therefore,

�0(S0) = (
X

(S,T)2I

�(S) ·⇥(T)

�([S])
· l(S,T))(S

0) =

X

(S,T)2I

�(S) ·⇥(T)

�([S])
· l(S,T)(S

0) =

=
X

{(S,T)2I|S=S0}

�(S) ·⇥(T)

�([S])
=

=
X

T2[S0]\d⇥e

�(S0) ·⇥(T)

�([S0])
=

= �(S0) ·
P

T2[S0]\d⇥e⇥(T)

�([S0])
=

52 Chapter 2 Probabilistic processes

= �(S0) · ⇥([S0])

�([S0])
=

= �(S0) · �([S0])

�([S0])
= (Hp)

= �(S0).

Symmetrically, it holds that ⇥(T) = ⇥0(T) for every T . For every (S, T) 2 I,

SRT (they belong to the same equivalence class), then �R⇥, since �0 and ⇥0 are

decompositions of � and ⇥ that satisfy the requirements of Definition 2.3.

2.2.3 Probabilistic Modal Logic

Probabilistic Modal Logic is a probabilistic variant of Ready Simulation Logic (Definition

1.37). The diamond operator of Probabilistic Modal Logic is indexed by a probability

value: the formula hµ ipF is true at a state P if and only if there is a µ-labelled transition

from P such that the probability of reaching a state satisfying F is greater than or equal

to p.

Probabilistic Modal Logic was defined in (Larsen and Skou 1991) in the setting of reactive

probabilistic processes, while its interpretation on the whole class of probabilistic processes

was recently studied in (Bernardo, De Nicola, and Loreti 2013c).

Definition 2.9. Let A be a set of atomic actions. The formulas of Probabilistic Modal

Logic (PML) on A are defined as follows:

F ::= >
��� ¬µ

��� F1 ^ F2

��� F1 _ F2

��� hµ ipF

where µ 2 A and p 2 [0, 1].

Let T = hSt,A ,�!i be a pLTS and let F be a PML-formula We define by induction on

the structure of F when P |= F :

P |= > always

P |= ¬µ i↵ P
µX�!

P |= F1 ^ F2 i↵ P |= F1 and P |= F2

P |= F1 _ F2 i↵ P |= F1 or P |= F2

P |= hµ ip F i↵ P
µ�! � and

P{�(P 0)|P 0 |= F} � p, for some �.

P ⌘PML Q if and only for every PML-formula F , P |= F i↵ Q |= F .

2.2 Probabilistic bisimilarity 53

Unlike Hennessy-Milner Logic, the formulas of Probabilistic Modal Logic do not have a

negation operation. Theorem 2.11 shows the reason why it is not needed if the minimal

probability assumption is satisfied.36

Definition 2.10. We define by structural induction on the formulas of PML the dual FD

of a formula F :

>D = hµ i1> ^ ¬µ ¬µD = hµ i1>

(F1 ^ F2)D = FD
1 _ FD

2 (F1 _ F2)D = FD
1 ^ FD

2

(hµ ip F 0)D = ¬µ _ hµ i1�(K�1)·⇡ F
0D

where K is the natural number obtained by rounding up p
⇡ to the nearest whole number.

Theorem 2.11. Let T = hSt,A ,�!i be a reactive pLTS satisfying the minimal deviation

assumption. For every PML-formula F , P |= F if and only if P 6|= FD.

Proof. By induction on F . Both the case when F = > and the case when F = ¬µ imme-

diately follow from the fact that P |= hµ i1> if and only if P
µ�!. If F is a conjunction

or a disjunction of formulas, the result follows directly from the inductive hypothesis.

Now, suppose that F = hµ ip F 0. P |= F if and only if P
µ�! � and

P{�(P 0)| P 0 |=
F 0} � p. If P |= F , then P

µ�! and by the minimal deviation assumption we have that:

X
{�(P 0)| P 0 6|= F 0} = 1�

X
{�(P 0)| P 0 |= F 0} 1�K · ⇡ < 1� (K � 1) · ⇡.

It follows from the inductive hypothesis that
P{�(P 0)| P 0 6|= F 0} =

P{�(P 0)| P 0 |= F 0D},
so P 6|= F 0D. If P 6|= F then either P |= ¬µ or

P{�(P 0)| P 0 |= F 0} < p. In the latter

case, it follows from the minimal deviation assumption and from the inductive hypothesis

that:

X
{�(P 0)| P 0 |= F 0D} =

X
{�(P 0)| P 0 6|= F 0} = 1�

X
{�(P 0)| P 0 |= F 0} � 1�(K�1)·⇡.

Hence, P |= FD and the result follows.

Theorem 2.12 shows that Probabilistic Modal Logic characterizes probabilistic bisimilarity

on reactive probabilistic Labelled Transition Systems, provided that the minimal deviation

assumption is satisfied.

36In (Desharnais, Edalat, and Panangaden 2002), the authors prove that the operator ¬µ of Probabilistic
Modal Logic is not needed in order to characterize probabilistic bisimilarity on reactive probabilistic
processes, even if we give the finitary assumptions on the support of the distributions up. These results
are achieved by considering Labelled Markov processes whose state space is not necessarily discrete.

54 Chapter 2 Probabilistic processes

Theorem 2.12. Let T = hSt,A ,�!i be a reactive probabilistic LTS satisfying the min-

imal deviation assumption. P ⇠ Q if and only if P ⌘PML Q

Proof.

()) We prove by structural induction on F that P ⇠ Q implies that for every PML-

formula, if P |= F then Q |= F . The other direction of this last implication follows

from the fact that ⇠ is an equivalence relation (Theorem 2.6(1)). Suppose that

P ⇠ Q. We only prove the new inductive cases with respect to the Hennessy-Milner

Theorem (Theorem 1.12).

(F = ¬µ) Suppose that Q 6|= F . We have that Q
µ�! and it follows from P ⇠ Q

that P
µ�!. Hence, P 6|= F .

(F = hµ ipF 0) P |= F implies that there exists a � such that P
µ�! � and

P{�(P 0)|P 0 |= F} � p. P ⇠ Q, so there is a ⇥ such that �⇠⇥, i.e. there

is a finite index set I such that � =
P

i2I pi ·Pi, ⇥ =
P

i2I pi ·Qi and Pi ⇠ Qi for

every i 2 I. Let K be the subset of I such that {Pi| i 2 K} = {P 0|P 0 |= F}. We

have that
P

k2K pk =
P{�(Pi)| i 2 K} =

P{�(P 0)|P 0 |= F}. It follows from

the inductive hypothesis that for every i 2 K, Qi |= F , hence
P{⇥(Q0)|Q0 |=

F} � P
k2K pk � p. Therefore, Q |= F .

(() We prove that ⌘PML is a probabilistic bisimulation, which implies the result. Let

P ⌘PML Q and P
µ�! �. Then there is a ⇥ such that Q

µ�! ⇥, since P 6|= ¬µ and

since it follows from P ⌘PML Q that Q 6|= ¬µ. Let [S] be an equivalence class in
St/⌘PML. Without any loss of generality, we can suppose that:

d�e = {P1, . . . , Pk, Pk+1, . . . , Pn}, where P1, . . . , Pk 2 [S] and Pk+1, . . . , Pn 62 [S],

d⇥e = {Q1, . . . , Qj , Qj+1, . . . , Qm}, where Q1, . . . , Qj 2 [S] and Qj+1, . . . , Qm 62
[S].

It follows from Theorem 2.11 that for every i from j+1 to m there is a PML-formula

Fi such that Qi 6|= Fi and S0 |= Fi for all S0 2 [S]. Thus, P |= hµ i�([S]) (Fj+1 ^
. . . ^ Fm), which implies that Q |= hµ i�([S]) (Fj+1 ^ . . . ^ Fm) by the hypothesis

that P ⌘PML Q. Suppose that ⇥([S]) < �([S]). For every i from j + 1 to m,

Qi 6|= Fj+1 ^ . . . ^ Fm, so Q 6|= hµ i�([S]) (Fj+1 ^ . . . ^ Fm), which leads to a contra-

diction. Therefore, ⇥([S]) � �([S]).

⌘PML is an equivalence relation is an equivalence relation, thus we can repeat the

argument symmetrically and we can conclude that ⇥([S]) = �([S]) for every equiva-

lence class [S] 2 St/⌘PML. It follows from Theorem 2.8 that ⌘PML is a probabilistic

bisimulation.

2.3 Larsen & Skou’s testing theory 55

2.3 Larsen & Skou’s testing theory

A further alternative characterization of probabilistic bisimilarity on probabilistic reactive

processes was proposed in (Larsen and Skou 1991). In this work, Kim G. Larsen and Arne

Skou define a set of tests and apply them to reactive probabilistic processes. These tests

have the capability of deciding whether a process can or cannot perform an atomic action

and of executing multiple experiments on the same process.

Definition 2.13. Given a set A of atomic actions, the tests of the testing language TLS

are defined as follows:

t ::= !
��� µ.t

��� (t1, ..., tn)

where µ 2 A . Every test t has an inductively defined set of observations Ot:

O! = {1!}
Oµ.t = {0µ} [{1µ : e| e 2 Ot}

O(t1,...,tn) = Ot1 ⇥ ...⇥Otn .

Let P be a reactive probabilistic process, t a test in TLS and e 2 Ot. The probability

Pt,P (e) of observing e when executing the test t on P is defined by structural induction

on t:

P!,P (1!) = 1

Pµ.t,P (0µ) =

8
<

:
1 if P

µX�!
0 else

Pµ.t,P (1µ : e) =

8
<

:
0 if P

µX�!
P

P 02d�e�(P 0) · Pt,P 0(e) else (where P
µ�! �)

P(t1,...,tn),P (e1, ..., en) =
nY

i=1

Pti,P (ei)

where e 2 Ot and ei 2 Oi for all i 2 {1, . . . , n}.
For any set E ✓ Ot of elements of the set Ot of observations on t, we let Pt,P (E) =
P

e2E Pt,P (e). As a special case we have that Pt,P (;) = 0 for all tests and for all processes.

We let Ec denote the complementary set of E in Ot (that is, Ec = {e 2 Ot| e 62 E}) and
we let (t)n denote the test:

(t, . . . , t| {z }
n-times

)

For every test t and for every reactive probabilistic process P , the function Pt,P : Ot !
[0, 1] is a probability distribution on Ot. In fact, it is easy to check that Pt,P (Ot) = 1.

56 Chapter 2 Probabilistic processes

2.3.1 Testability of PML-formulas

A property on the states of a reactive probabilistic LTS is ls-testable if there is a Larsen

and Skou’s test t and there is a set of observations E such that the probability of doing an

observation in E when executing the test t on a process is arbitrarily high if the process

enjoys the property and it is arbitrarily low if the process does not.

Definition 2.14. Let T = hSt,A ,�!i be a reactive pLTS. A property � is ls-testable if

for any � > 0 there exists a test t� in TLS and there exists a set E� of observations in Ot�

such that for every process P it holds that:

1. if P 2 � then Pt�,P (E�) � 1� �,

2. if P 62 � then Pt�,P (E�) �,

The positive real number � is the level of significance.

A class of properties � is testable if all the properties in � are testable.

The class of properties we are interested in is the class of those sets consisting of all and

only the processes satisfying a formula F , for every formula F of Probabilistic Modal

Logic. In what follows, we will say that a PML-formula F is testable if the set of processes

satisfying F is testable.

The following lemma establishes some useful properties of the subsets of the set of obser-

vations of a test.

Lemma 2.15. Let T = hSt,A ,�!i be a reactive pLTS. For every test t in TLS and for

every P , the probability distribution Pt,P on the set of observations Ot has the following

properties.

1. For every Et ✓ Ot,

Pµ.t,P (1µ : Et) =

8
<

:
0 if P

µX�!
P

P 02d�e�(P 0) · Pt,P 0(Et) else (where P
µ�! �)

where 1µ : Et = {1µ : e| e 2 Et}.

2. For every n 2 N and Et1 ✓ Ot1 , . . . , Etn ✓ Otn,

P(t1,...,tn),P (E1 ⇥ ...⇥ En) =
nY

i=1

Pti,P (Ei).

3. For every Et ✓ Ot, Pt,P (Ec
t) = 1� Pt,P (Et).

Proof.

2.3 Larsen & Skou’s testing theory 57

1. If P
µX�! then trivially Pµ.t,P (1µ : Et) = 0. Suppose that P

µ�! �. Then:

Pµ.t,P (1µ : Et) =
X

e2Et

Pµ.t,P (1µ : e) =

=
X

e2Et

X

P 02d�e

�(P 0) · Pt,P 0(e) =

=
X

P 02d�e

�(P 0) ·
X

e2Et

Pt,P 0(e) =

=
X

P 02d�e

�(P 0) · Pt,P 0(Et).

2. It holds that:

P(t1,...,tn),P (E1 ⇥ ...⇥ En) =
X

(e1,...,en)2E1⇥...⇥En

nY

i=1

Pti,P (ei) =

=
X

e12E1

X

e22E2

. . .
X

en2En

nY

i=1

Pti,P (ei) =

=
X

e12E1

X

e22E2

. . .
nY

i=1

X

en2En

Pti,P (ei) =

...

=
nY

i=1

X

e12E1

X

e22E2

. . .
X

en2En

Pti,P (ei) =

=
nY

i=1

X

(e1,...,en)2E1⇥...⇥En

Pti,P (ei) =

=
nY

i=1

Pti,P (Ei).

3. Pt,P is a probability distribution on Ot, so Pt,P (E) + Pt,P (Ec) = Pt,P (Ot) = 1 and

the result follows.

We can now prove that the formulas of Probabilistic Modal Logic are testable on the class

of reactive probabilistic processes satisfying the minimal deviation assumption. The proof

of Theorem 2.16 involves some definitions and results from probability theory, which are

presented e.g. in (Bertsekas and Tsitsiklis 2008) and (DeGroot and Schervish 2012).

Theorem 2.16. Let T = hSt,A ,�!i be a reactive pLTS satisfying the minimal deviation

assumption. The formulas of Probabilistic Modal Logic are testable.

58 Chapter 2 Probabilistic processes

Proof. The proof is by structural induction on PML-formulas.

(F = >) Let t> = ! and E> = {1!}. It always holds that P |= > and P!,P (1!) = 1 �
1� � for every � > 0.

(¬µ) Let t¬µ = µ.t and E¬µ = {0µ}. If P |= ¬µ then P
µX�! and Pµ.t,P (0µ) = 1. If

P 6|= ¬µ then P
µ�! and Pµ.t,P (0µ) = 0.

(F = F1 ^ F2) By the inductive hypothesis, for any level of significance �1 there exists a

test tF1 and a set EF1 ✓ OtF1
satisfying the definition of testability for F1. Analogously,

for any level of significance �2 there exists a test tF2 and a set EF2 ✓ OtF2
satisfying

the definition of testability for F2. If P |= F1 ^ F2 then:

P(tF1 ,tF2),P
(EF1 ⇥ EF2) = PtF1 ,P

(EF1) · PtF2
(EF2) (by Lemma 2.15(2))

� (1� �F1) · (1� �F2) (by HI)

� 1� (�F1 + �F2).

If P 6|= F1 ^ F2 then it follows from the inductive hypothesis that PtF1 ,P
(EF1) �1 or

PtF2 ,P
(EF2) �2, thus:

P(tF1 ,tF2),P
(EF1 ⇥ EF2) = PtF1 ,P

(EF1) · PtF2
(EF2) PtF1 ,P

(EF1) �1

or P(tF1 ,tF2),P
(EF1 ⇥ EF2) = PtF1 ,P

(EF1) · PtF2
(EF2) PtF2 ,P

(EF2) �2.

Hence, P(tF1 ,tF2),P
(EF1 ⇥ EF2) �1 + �2.

For a given � > 0, let �1 and �2 be positive real numbers such that � = �1 + �2.

We proved above that there are a test tF1^FF2
= (tF1 , tF2) and an observation set

EF1^F2 = EF1 ⇥ EF2 such that:

if P |= F1 ^ F2 then PtF1^FF2
,P (EF1^F2) � 1� �,

if P 6|= F1 ^ F2 then PtF1^FF2
,P (EF1^F2) �.

(F = F1 _ F2) As in the previous case, it follows from the inductive hypothesis that for

every pair of �1, �2 > 0 there are tests tF1 , tF2 and observation sets EF1 , EF2 satisfying

the conditions of testability for the PML-formulas F1 and F2, respectively. If P |= F1

and P |= F2 then, as in the previous case, we have that:

(a) P(tF1 ,tF2),P
(EF1 ⇥ EF2) � (1� �F1) · (1� �F2).

If P |= F1 and P 6|= F2 then:

(b) P(tF1 ,tF2),P
(EF1 ⇥ Ec

F2
) = PtF1 ,P

(EF1) · PtF2
(Ec

F2
) (by Lemma 2.15(2))

2.3 Larsen & Skou’s testing theory 59

= PtF1 ,P
(EF1) · (1� PtF2

(EF2)) (by Lemma 2.15(3))

� (1� �F1) · (1� �F2) (by HI).

Symmetrically, if P 6|= F1 and P |= F2 then:

(c) P(tF1 ,tF2),P
(Ec

F1
⇥ EF2) � (1� �F1) · (1� �F2).

By considering the union of the sets of observations in (a), (b) and (c), we derive that

P |= F1 _ F2 implies that:

P(tF1 ,tF2),P
(EF1 ⇥ EF2 [EF1 ⇥ Ec

F2
[Ec

F1
⇥ EF2)

= P(tF1 ,tF2),P
(EF1 ⇥ EF2) + P(tF1 ,tF2),P

(EF1 ⇥ Ec
F2
) + P(tF1 ,tF2),P

(Ec
F1

⇥ EF2)

� (1� �F1) · (1� �F2)

� 1� (�1 + �2).

Finally, if P 6|= F1 ^ F2 then:

P(tF1 ,tF2),P
(EF1 ⇥ EF2 [EF1 ⇥ Ec

F2
[Ec

F1
⇥ EF2)

= P(tF1 ,tF2),P
(EF1 ⇥ EF2) + P(tF1 ,tF2),P

(EF1 ⇥ Ec
F2
) + P(tF1 ,tF2),P

(Ec
F1
⇥EF2)

= PtF1 ,P
(EF1) + PtF2

(EF2)� PtF1 ,P
(EF1) · PtF2

(EF2)

 PtF1 ,P
(EF1) + PtF2

(EF2)

 �1 + �2 (by HI).

For any � > 0, if � = �1 + �2 then the test tF1^FF2
= (tF1 , tF2) and the observation set

EF1_F2 = {(e1, e2)| e1 2 E1 _ e2 2 E2} = EF1 ⇥ EF2 [EF1 ⇥ Ec
F2

[Ec
F1

⇥ EF2

satisfy the definition of testability for the PML-formula F1 _ F2.

(hµ ipF) By the inductive hypothesis on F we have that for every level of significance

�F there is a test tF and a set of observations EF satisfying the definition of testability

for any process P . Consider the test µ.tF and the set of observations 1µ : EF = {1µ :

e| e 2 EF }.
If hµ ipF is true at P then there is a probability distribution � such that P

µ�! �

and �({P 0|P 0 |= F}) � p. It follows from the minimal deviation assumption that

�({P 0|P 0 |= F}) = m · ⇡ for some m 2 N such that m � K, where K is the natural

number obtained by rounding up p
⇡ to the nearest whole number. We have that:

Pµ.tF ,P (1µ : EF) =

60 Chapter 2 Probabilistic processes

=
X

P 02d�e

�(P 0) · PtF ,P 0(EF) (by Lemma 2.15(1))

=
X

{P 02d�e|P 0|=F}

�(P 0) · PtF ,P 0(EF) +
X

{P 02d�e|P 0 6|=F}

�(P 0) · PtF ,P 0(EF)

�
X

{P 02d�e|P 0|=F}

�(P 0) · PtF ,P 0(EF)

�
X

{P 02d�e|P 0|=F}

�(P 0) · (1� �F) (by HI)

� K · ⇡ · (1� �F)

def
= �.

If P 6|= F and P
µ�! � then �({P 0|P 0 |= F}) < p. By the minimal deviation

assumption there is an m0 2 N such that �({P 0|P 0 |= F}) = m0 ·⇡, where m0 K� 1.

Therefore,

Pµ.tF ,P (1µ : EF) =

=
X

P 02d�e

�(P 0) · PtF ,P 0(EF)

=
X

{P 02d�e|P 0|=F}

�(P 0) · PtF ,P 0(EF) +
X

{P 02d�e|P 0 6|=F}

�(P 0) · PtF ,P 0(EF)

X

{P 02d�e|P 0|=F}

�(P 0) · PtF ,P 0(EF) +
X

{P 02d�e|P 0 6|=F}

�(P 0) · �F (by HI)

 (K � 1) · ⇡ + �F
def
= �0.

If P 6|= F and P
µX�! then it holds by Lemma 2.15(1) that Pµ.tF ,P (1µ : EF) = 0

(K � 1) · ⇡ + �F as well.

Suppose that �F satisfies the following property:

(⇤) �0 +
1

4
· ⇡ < K � 1

2
· ⇡ < � � 1

4
· ⇡.

Consider now the random variable X on the set Oµ.t such that X(e) = 1 if e 2 1µ : EF

and X(e) = 0 if e 62 1µ : EF . We have that:

Pµ.t,P (X = 1) = Pµ.t,P (1µ : EF)

Pµ.t,P (X = 0) = Pµ.t,P ((1µ : EF)
c) =

= 1� Pµ.t,P (1µ : EF) (by Lemma 2.15(3)).

2.3 Larsen & Skou’s testing theory 61

Therefore, X is a Bernoulli random variable whose parameter is Pµ.t,P (1µ : EF). The

mean of X is Pµ.t,P (1µ : EF) and its variance is Pµ.t,P (1µ : EF) · (1� Pµ.t,P (1µ : EF)).

For any n 2 N, let Xn be the random variable on the set O(µ.t)n such that:

Xn(e1, . . . , en) = |{ei|1 i n and X(ei) = 1}|.

The random variable Xn associates to every n-ary sequence of observations in Oµ.t the

relative number of observations belonging to 1µ : EF and it holds that:

Xn(e1, . . . , en) =
nX

i=1

X(ei).

Since X is a Bernoulli random variable whose parameter is Pµ.t,P (1µ : EF), this is

equivalent to saying that Xn is a binomial random variable whose parameters are

(n,Pµ.t,P (1µ : EF)). Hence, Xn has mean n · Pµ.t,P (1µ : EF) and its variance is

n · Pµ.t,P (1µ : EF) · (1� Pµ.t,P (1µ : EF)).

Let n 2 N. Define the the following set of observations E relative to the test (a.t)n:

E = {(e1, . . . , en)
�� X

n

n
� K � 1

2
· ⇡},

The set E consists of all and only the n-ary sequences of observations in Oµ.t whose

number of observations belonging to the set 1µ : EF is greater than or equal to (K �
1
2 · ⇡) · n. The mean and the variance of the random variable Xn

n respectively are:

m (Xn) = Pµ.t,P (1µ : EF)

v (Xn) =
m (Xn) · (1�m (Xn))

n
.

If Xn

n < K � 1
2 · ⇡ then Pµ.t,P (1µ : EF) � Xn

n > Pµ.t,P (1µ : EF) �
�
K � 1

2 · ⇡�. By

(⇤) we have that Pµ.t,P (1µ : EF) �
�
K � 1

2 · ⇡� � � � �
K � 1

2 · ⇡� > 1
4 · ⇡, therefore��Xn

n � Pµ.t,P (1µ : EF)
�� > Pµ.t,P (1µ : EF) � Xn

n > 1
4 · ⇡. So, Xn

n < K � 1
2 · ⇡ implies

that |Xn

n � Pµ.t,P (1µ : EF) | > 1
4 · ⇡. As a consequence,

(⇤⇤) P(µ.t)n,P

✓
Xn

n
< K � 1

2
· ⇡

◆
 P(µ.t)n,P

✓����
Xn

n
� Pµ.t,P (1µ : EF)

���� >
1

4
· ⇡

◆
.

If Xn

n � K � 1
2 · ⇡ we analogously derive from (⇤) that:

(⇤ ⇤ ⇤) P(µ.t)n,P

✓
Xn

n
� K � 1

2
· ⇡

◆
 P(µ.t)n,P

✓����
Xn

n
� Pµ.t,P (1µ : EF)

���� >
1

4
· ⇡

◆
.

62 Chapter 2 Probabilistic processes

Suppose that P |= hµ ipF . Then it holds that:

P(µ.t)n,P (E) = P(µ.t)n,P

✓
Xn

n
� K � 1

2
· ⇡

◆

= 1� P(µ.t)n,P

✓
Xn

n
< K � 1

2
· ⇡

◆

� 1� P(µ.t)n,P

✓����
Xn

n
� Pµ.t,P (1µ : EF)

���� >
1

4
· ⇡

◆
(By (**))

= 1� P(µ.t)n,P

✓����
Xn

n
�m(Xn)

���� >
1

4
· ⇡

◆

� 1�
✓
4

⇡

◆2

· v (Xn) (By Chebyshev’s inequality)

= 1�
✓
4

⇡

◆2

· Pµ.t,P (1µ : EF) · (1� Pµ.t,P (1µ : EF))

n

� 1�
✓
4

⇡

◆2

· 1
n
.

Conversely, if P 6|= hµ ipF then:

P(µ.t)n,P (E) = P(µ.t)n,P

✓
Xn

n
� K � 1

2
· ⇡

◆

 P(µ.t)n,P

✓����
Xn

n
� Pµ.t,P (1µ : EF)

���� >
1

4
· ⇡

◆
(By (***))

✓
4

⇡

◆2

· v (Xn) (By Chebyshev’s inequality)

✓
4

⇡

◆2

· 1
n
.

For any level of significance � > 0, we choose �F such that (⇤) is satisfied and we choose

n such that:

� �
✓
4

⇡

◆2

· 1
n
.

We thereby have that the test (µ.t)n and the set of observations E satisfy the definition

of testability with respect to � and hµ ipF :

if P |= hµ ipF then P(µ.t)n,P (E) � 1� �
4
⇡

�2 · 1
n � 1� �,

if P 6|= hµ ipF then P(µ.t)n,P (E) �
4
⇡

�2 · 1
n �.

2.3 Larsen & Skou’s testing theory 63

2.3.2 Characterization of probabilistic bisimilarity

The ls-testability of Probabilistic Modal Logic formulas allows us to prove that in Larsen

and Skou’s testing scenario two processes are probabilistically bisimilar if and only if they

have the same probability of doing the same observations when the a test is executed

(Theorem 2.18).

Lemma 2.17. Let T = hSt,A ,�!i be a reactive pLTS satisfying the minimal deviation

assumption. If P ⇠ Q then Pt,P (e) = Pt,Q(e) for all tests t in TLS and for all observations

e 2 Ot.

Proof. The proof is by induction on the structure of the tests in TLS. Suppose that P ⇠ Q.

(t = !) There is only one possible observation (i.e. the observation e = 1!) and Pt,P (e) =

Pt,Q(e) = 1.

(t = µ.t0) There are two possibilities:

e = 0µ If P
µ�! then it follows from P ⇠ Q that Q

µX�! and Pt,P (e) = Pt,Q(e) = 0.

If P
µX�! then Q

µX�! and Pt,P (e) = Pt,Q(e) = 1.

e = 1µ : e0 If P
µX�! then both the probability values are equal to 0, analogously to

the previous case. Now, suppose that P
µ�! �. By the hypothesis that P ⇠ Q,

there is a ⇥ such that Q
µ�! ⇥ and �⇠⇥. Let I be a finite index set through

which we can decompose � and ⇥, according to Definition 2.3. We have that:

Pµ.t0,P (1µ : e0) =
X

P 02d�e

�(P 0) · Pt0,P 0(e0)

=
X

P 02d�e

✓ X

{i2I|Pi=P 0}

pi

◆
· Pt0,P 0(e0)

=
X

P 02d�e

X

{i2I|Pi=P 0}

pi · Pt0,Pi(e
0)

=
X

i2I
pi · Pt0,Pi(e

0)

=
X

i2I
pi · Pt0,Qi(e

0) (by HI)

=
X

Q02d⇥e

⇥(Q0) · Pt0,Q0(e0)

= Pµ.t0,Q(1µ : e0).

(t = (t1, ..., tn)) The result directly follows from the inductive hypothesis.

64 Chapter 2 Probabilistic processes

Theorem 2.18 (Larsen & Skou’s Theorem). Let T = hSt,A ,�!i be a reactive pLTS

satisfying the minimal deviation assumption. Then P ⇠ Q if and only if Pt,P (e) = Pt,Q(e)

for all tests t in TLS and for all observations e 2 Ot.

Proof. We proved the left to right implication in Lemma 2.17.

As for the right to left implication, suppose that P 6⇠ Q. By Theorem 2.12, there is a

PML-formula F such that P |= F and Q 6|= F . Let � be a positive real number. By

Theorem 2.16, there is a test t� in TLS and there is a set of observation E� such that:

(⇤) Pt� ,P (E�) � 1� � and Pt� ,Q(E�) �.

If Pt,P (e) = Pt,Q(e) for all tests t in TLS and for all observations e 2 Ot, then Pt� ,P (E�) =

Pt� ,Q(E�), which contradicts (⇤). Then there is a test t� in TLS and there is an observation

e� 2 Ot such that Pt� ,P (E�) 6= Pt� ,Q(E�), and the result follows by contraposition.

Chapter 3

Testing processes through

higher-order languages

This chapter introduces three testing-based equivalences on processes: may-equivalence,

must-equivalence and test-equivalence. A higher-order concurrent language named HOL

is defined in Section 3.2 and two testing scenarios based on this language are analyzed.

In the first one (Section 3.3), the tested processes are nondeterministic processes and we

prove that ready simulation equivalence coincides with both may-equivalence and test-

equivalence. In the second testing scenario (Section 3.4), the tested processes are prob-

abilistic reactive processes and the three testing equivalences collapse onto probabilistic

bisimilarity.

3.1 Testing equivalences

Testing equivalences on processes are based on the idea that, given a class of tests, two

processes P and Q are equivalent if and only if there is no test distinguishing P and Q.

The testing approach to behavioral equivalences was developed by Rocco De Nicola and

Matthew Hennessy (De Nicola and Hennessy 1984) in the setting of nondeterministic

systems. They proved that if we use CCS-processes to test CCS-processes, the induced

testing equivalence is the so-called “failure equivalence”, which is finer than completed

trace equivalence but coarser than ready simulation equivalence (van Glabbeek 2001). In

(Abramsky 1987), Samson Abramsky proposed a stronger language of tests and proved

that bisimilarity coincides with the equivalence induced by these tests on Labelled Transi-

tion Systems. In (Yi and Larsen 1992), Wang Yi and Kim G. Larsen extended De Nicola

and Hennessy’s testing theory to the setting of probabilistic processes.

In order to define testing-based equivalences on processes, we need to set up a testing

scenario.

65

66 Chapter 3 Testing processes through higher-order languages

Definition 3.1. A testing scenario is a quadruple hP,T,O,Succi, where:

- P is a set of processes,

- T is a set of tests which can be applied to processes,

- O is a set of values (representing the possible outcomes from applying a test to a

process) equipped with a partial order ,

- Succ : T⇥P ! P+(O) is a function such that Succ(T, P) is the non-empty set of

the possible results of applying the test T to the process P .

We define the associated may-preorder, must-preorder and test-preorder on P as follows:

P vT
may Q i↵ 8T 2 T,

G
Succ(T, P)

G
Succ(T,Q)

P vT
must Q i↵ 8T 2 T,

l
Succ(T, P)

l
Succ(T,Q)

P vT
test Q i↵ P vT

may Q and P vT
must Q

The induced equivalences are denoted by 'T
may, 'T

must and 'T
test, respectively.

The interpretation of the testing preorders and of the related equivalences will become

clear in the following sections, where we discuss two specific testing scenarios based on the

language HOL.

3.2 HOL

We define the higher-order language HOL, freely inspired by the Kell Calculus of (Schmitt

and Stefani 2005). In a higher-order language we have variables ranging over the terms of

the language and we have constructs allowing terms to take other terms as input. HOL is

a process calculus featuring some of the CCS operators that we introduced in Section 1.4:

the 0 operator, the prefix operator and the parallel operator. Besides these operators, the

HOL language features constructs for kells37, passivation of kells and refusal of actions. In

this section we only define the syntax of HOL, leaving the definition of its semantics to

the following sections.

Let us briefly list and describe the main facilities supplied by this language.

Hierarchical localities with names A process can be in a kell with a certain name, and this

locality can contain sublocalities with possibly di↵erent names as well. For instance,

P | hQih is the parallel composition of processes whose right-side component is the

37In the Kell Calculus, kells are localities identified by a name. As Alan Schmitt and Jean-Bernard
Stefani put it: “the word ‘kell’ is intended to remind of the word ‘cell’, in a loose analogy with biological
cells”(Schmitt and Stefani 2005: 149).

3.2 HOL 67

process Q contained in the locality named h. At the same time, this whole process

could be placed into a higher-level locality named l, as in hP | hQihil. The processes

in the environment of hP | hQihil (i.e. in parallel composition with hP | hQihil) can

communicate with P , while only P can interact with hQih.

Local communication Besides the usual CCS prefix operator, the HOL language has local

prefixes, i.e. prefixes where the action is indexed with the name of a kell. For

instance, the process ail .P can lead to a synchronization whenever it is in parallel

composition with a process performing an ā-labelled transition inside a kell named

l. Instead, a.P can only interact with processes on its own level, that is, it cannot

communicate with any process inside a kell.

Local refusal We use eal.P to denote the process which tests the availability in the en-

vironment of a locality named l where it is not possible to perform an a-labelled

transition. If there is a locality satisfying this condition in the environment of eal.P ,

then the locality is destroyed while P is enabled.

Passivation of kells The higher-order construct of the HOL language is the passivation

operator pass(x)l, where x is a variable ranging over processes and l is the name

of a locality. A kell hQil is passivated by pass(x)l.P , which takes as input Q and

substitutes it to the free occurrences of the higher-order variable x in P .

Definition 3.2. Let N be a set of atomic actions a, b, c....

- N is the set of its conames, i.e. the set {ā| a 2 N } where a = ¯̄a

- A ? = N [N [{↵il |↵ 2 N [N , l 2 N }

- A ⇤
⌧,! = A ? [{⌧,!}, where ! and ⌧ are two names of actions that do not appear in

A ?,

- fA ? = {e↵il |↵ 2 N [N , l 2 N } [{e↵il |↵ 2 N [N , l 2 N }

We let ↵,�... range over N [N and ↵⇤,�⇤... range over A ⇤. Define µ̄ = ↵̄il if µ = ↵il

and µ̄ = ē↵il if µ = e↵il .

The HOL-terms on N are defined by the following grammar:

H ::= 0
��� x

��� ↵⇤.H
��� e↵il .H

��� !.H
��� H |H

��� hHil
��� pass(x)l.H

where x is a variable in a countably infinite set of variables V.

In the remaining part of this work we will constantly use the contexts of the language

HOL and apply them to terms that are not already embodied in the language defined

above. Given a language, a context of the language is a term where one or more empty

68 Chapter 3 Testing processes through higher-order languages

holes appear. Formally, the HOL-contexts on a set of actions’ names N are defined by

the following grammar:

C ::= 0
��� x

��� [·]
��� ↵⇤.C

��� e↵il .C
��� !.C

��� C |C
��� hCil

��� pass(x)l.C

where [·] represents an empty hole.

We let Ctx(HOL) denote the set of HOL-contexts on a given set of actions’ names N .

3.3 Testing nondeterministic processes

In order to apply HOL-contexts to nondeterministic processes, we define a new language

HOLn. This language is obtained by adding to the syntax of HOL infinitely many constant’s

names, one for every nondeterministic process.

Definition 3.3. The terms of the language HOLn on N are defined by the following

grammar:

P ::= 0
��� x

��� S
��� ↵⇤.P

��� e↵il .P
��� !.P

��� P |P
��� hP il

��� pass(x)l.P

where S is (the name of) a nondeterministic process whose transitions are labelled with

actions in N .

The set Pr(HOLn) of HOLn’s processes is the set of HOLn’s closed terms.

Let C be a HOLn-context where n distinct holes appear and let P1, ..., Pn be HOLn-terms.

We say that C is an n-ary HOLn-context and we write C[P1, ..., Pn] to denote the HOLn-

term obtained by substituting Pi to the i-th occurrence of [·] in C, for 1 i n.

The operational semantic of the language HOLn on N is defined by the LTS

hPr(HOLn),A HOL,�!i,

where A HOL = A ⇤
⌧,! [fA ⇤ [{pass(⇢)l| ⇢ 2 Pr(HOLn) [V and l 2 N } and the transition

relation is given by the rules in figure 3.1. A process P is stable (see rule (Oref)) if it

cannot perform ⌧ -labelled transitions.

Henceforth, we will use the following notation:

- we write µ instead of µ.0, where µ 2 A ? [fA ?,

- for any n � 1, we inductively define the parallel composition

n>>>>>>
>>>>>>

i=1

Pi of the HOLn-

terms P1, ..., Pn as follows:

1>>>>>>
>>>>>>

i=1

Pi = P1

n+1>>>>>>
>>>>>>

i=1

Pi = (

n>>>>>>
>>>>>>

i=1

Pi) |Pn+1

3.3 Testing nondeterministic processes 69

S
a�!0

S0
(NP)

S
a�! S0

where �!0 is the

transition relation

of the LTS for S

(pref)µ2A ?[{!}
µ.P

µ�! P

(Iref)

e↵il .P
e↵il�! P

P
↵X�! and P is stable

(Oref)

hP il e↵il�! 0

P1
µ�! P 0

1
(parL)µ2A HOLn

P1 |P2
µ�! P 0

1 |P2

P1
µ�! P 0

1
(parR)µ2A HOLn

P2 |P1
µ�! P2 |P 0

1

P1
µ�! P 0

1 P2
µ̄�! P 0

2 (sync)
µ2A ?[eA ?

P1 |P2
⌧�! P 0

1 |P 0
2

P
↵�! P 0

(kell)

hP il ↵il�! hP 0il
P

⌧�! P 0
(⌧kell)

hP il ⌧�! hP 0il

(Ipass)

pass(x)l.P
pass(x)l�! P

(Opass)

hP il pass(P)l�! 0

P1
pass(⇢1)l�! P 0

1 P2
pass(⇢2)l�! P 0

2
(psync)

P1 |P2
⌧�! P 0

1 |P 0
2{P/x}

where either ⇢1 = P and ⇢2 = x

or ⇢1 = x and ⇢2 = P

Figure 3.1: SOS for processes in HOLn.

3.3.1 Testing preorders on nondeterministic processes

We use HOLn-contexts as tests for nondeterministic processes. There are only two possible

outcomes: success, represented by >, and failure, represented by ?. The test is executed

by substituting a process to the empty hole of the HOL-context playing the role of the test.

The function S associates to a HOL-process P a non-empty subset of {?,>}, determined

70 Chapter 3 Testing processes through higher-order languages

as follows:

S(P) ={>| P =) S for some S such that S
!�!}

[{?| P =) S for some S such that S
!X�! and S

⌧X�!}
[{?| P diverges, i.e. there is an infinite ⌧ -labelled path from P}.

Hence, in this testing scenario the function Succ is such that Succ(C,P) = S(C[P]) ✓
{?,>}, for every unary HOL-context C and for every nondeterministic process P .

Define the following relations between processes and unary HOL-contexts:

P may pass C if and only if there exists an S such that C[P] =) S
!�!,

P must pass C if and only if for every ⌧ -labelled path C[P] = S0
⌧�! S1

⌧�! S2 . . .

there is an n 2 N such that Sn
!�!.

By the definition of the function Succ, in the testing scenario hPr,Ctx(HOL), {?,>},Succi,
where Pr is the set of nondeterministic processes whose transitions are labelled with ac-

tions in N , the testing preorders introduced in Section 3.1 can be characterized as follows:

P vHOLn
may Q i↵ > 2 S(C[P]) implies > 2 S(C[Q]) for every unary HOLn-context C

i↵ P may pass C implies Q may pass C for every unary HOLn-context C

P vHOLn
must Q i↵ {>} = S(C[P]) implies {>} = S(C[Q]) for every unary HOLn-context C

i↵ P must pass C implies Q must pass C for every unary HOLn-context C

P vHOLn
test Q i↵ S(C[P]) ✓ S(C[Q]).

3.3.2 Ready simulation equivalence implies test-equivalence

This section is devoted to proving that if two nondeterministic processes P and Q are

ready simulation equivalent then they are both may-equivalent and must-equivalent in

the testing scenario defined above.

By Theorem 3.4, if P and Q are ready simulation equivalent processes whose transitions

are labelled with actions in N then the processes C[P] and C[Q] are themselves ready

simulation equivalent with respect to a set of actions including ⌧ and !, for any unary HOL-

context C. As a consequence, proving that ready simulation equivalent nondeterministic

processes whose transitions are labelled with action in N aremay-equivalent (respectively:

must-equivalent) boils down to proving that if P and Q are ready simulation equivalent

nondeterministic processes defined over a set of atomic actions including ⌧ and ! then

P has a successful path (respectively: all the paths from P are successful) if and only if

3.3 Testing nondeterministic processes 71

Q has a successful path (respectively: all the paths from Q are successful). This result

is essential for the proofs of Theorem 3.5 and Theorem 3.7, whose immediate corollaries

are that ready simulation equivalence implies may-equivalence and that ready simulation

equivalence implies must-equivalence, respectively.

Theorem 3.4. Let T = hSt,N ,�!i be an LTS. For any n 2 N, let P1, ..., Pn, Q1, ..., Qn

be processes in T such that Pi hr Qi, for 1 i n. For every n-ary HOL-context C,

C[P1, ..., Pn] hr C[Q1, ..., Qn], where hr is defined on A ⇤
⌧,!.

Proof. Consider the following relation on HOLn-processes:

R = {< C[P1, ..., Pn], C[Q1, ..., Qn] > |n 2 N, C is an n-ary HOL-context,

{P1, ..., Pn, Q1, ..., Qn} ✓ St and Pi .r Qi for 1 i n}.

We show that R is a ready simulation, that is, we prove by structural induction on C that

for every n 2 N, whenever C is an n-ary HOL-context and C[P1, ..., Pn]RC[Q1, ..., Qn],

1. for every µ 2 A ⇤
⌧,!, if C[P1, ..., Pn]

µ�! S then C[Q1, ..., Qn]
µ�! S0 and SRS0, for

some S0 2 HOLn,

2. for every µ 2 A ⇤
⌧,!, if C[P1, ..., Pn]

µX�! then C[Q1, ..., Qn]
µX�!.

(C = [·]) C is a unary context and C[P] = P .r Q = C[Q] satisfies the conditions by

the definition of .r.

(C = !.C 0), (C = ↵⇤.C 0) The result directly follows from the inductive hypothesis on

C 0.

(C = e↵⇤.C 0), (C = pass(x)l.C 0) The processes cannot perform transitions labelled with

actions in A ⇤
⌧,!, hence they vacuously satisfy the first condition.

(C = hC 0il) hC 0il[P1, ..., Pn] = hC 0[P1, ..., Pn]il and there are two cases:

• C 0[P1, ..., Pn]
↵�! S, so by rule (kell) hC 0[P1, ..., Pn]il ↵l�! hSil.

It follows from the inductive hypothesis that hC 0[Q1, ..., Qn]il ↵l�! hS0il, for some

S0 such that SRS0. By the definition of R , we have that that there is an m 2 N,
there is an m-ary HOLn-context C 00 and there are processes P 0

1, ..., P
0
m, Q0

1, ..., Q
0
m

in T such that S = C 00[P 0
1, ..., P

0
m], S0 = C 00[Q0

1, ..., Q
0
m] and P 0

i RQ0
i, for all i

from 1 to m. Therefore, there is an m-ary HOLn-context C 000 = hC 00il such that

hSil = C 000[P 0
1, ..., P

0
m]RC 000[Q0

1, ..., Q
0
m] = hS0il.

• C 0[P1, ..., Pn]
⌧�! S and hC 0[P1, ..., Pn]il ⌧�! hSil, by rule (⌧kell).

The proof of the first condition is analogous to the previous case.

72 Chapter 3 Testing processes through higher-order languages

We now prove that the second condition holds as well. If hC 0[Q1, ..., Qn]il µ�! then

µ 2 {↵⇤, ⌧} and C 0[Q1, ..., Qn] can perform an ↵-labelled, or ⌧ -labelled, action. By

the inductive hypothesis, C 0[P1, ..., Pn] can perform a transition labelled with the same

name, so hC 0[Q1, ..., Qn]il µ�!.

(C = C1 |C2) C[P1, ..., Pn] = C1[P1, ..., Pk] |C2[Pk+1, ..., Pn] and there are five possible

cases:

• C1[P1, ..., Pk]
µ�! S and we derive that C[P1, ..., Pn]

µ�! S |C2[Pk+1, ..., Pn], by

rule (parL).

By the inductive hypothesis there is an S0 such that C1[Q1, ..., Qk]
µ�! S0 and

SRS0; by rule (parL), C1[Q1, ..., Qk] |C2[Qk+1, ..., Qn]
µ�! S0 |C2[Qk+1, ..., Qn].

The first condition follows analogously to the case (C = hC 0il).
• C2[Pk+1, ..., Pn]

µ�! S and, by rule (parR), C[P1, ..., Pn]
µ�! C1[P1, ..., Pk] |S.

Symmetrical to the previous case.

• C1[P1, ..., Pk]
↵⇤�! S1, C2[Pk+1, ..., Pn]

↵̄⇤�! S2 and C[P1, ..., Pn]
⌧�! S1 |S2.

It follows from the inductive hypothesis that by applying rule (sync) we derive

that C1[Q1, ..., Qk] |C2[Qk+1, ..., Qn]
⌧�! S0

1 |S0
2, for some S0

1, S
0
2 such that S1RS0

1

and S2RS0
2. By the definition of R ,

S1 |S2 =

= C 0
1[P

0
1, ..., P

0
m1

] |C 0
2[P

00
1 , ..., P

00
m2

] =

= C 0
1 |C 0

2[P
0
1, ..., P

0
m1

, P 00
1 , ..., P

00
m2

] R C 0
1 |C 0

2[Q
0
1, ..., Q

0
m1

, Q00
1, ..., Q

00
m2

] =

= C 0
1[Q

0
1, ..., Q

0
m1

] |C 0
2[Q

00
1, ..., Q

00
m2

] =

= S0
1 |S0

2.

where P 0
i RQ0

i and P 00
j RQ00

j for 1 i m1 and 1 j m2.

• C1[P1, ..., Pk]
pass(x)l�! S1, C2[Pk+1, ..., Pn]

pass(S)l�! S2 and by rule (psync) we derive

that C[P1, ..., Pn]
⌧�! S1 |S2{S/x}.

P1, ..., Pn cannot perform higher-order actions, hence C1[P1, ..., Pk]
pass(x)l�! implies

that C1 is the parallel composition of contexts such that at least one of them is

of the form pass(x)l.C 0
1. Analogously, if C2[Pk+1, ..., Pn]

pass(S)l�! then C2 is the

parallel composition of contexts such that at least one of them is of the form hC 0
2i.

For the sake of simplicity, suppose that C1[P1, ..., Pk] = pass(x)l.C 0
1[P1, ..., Pk]

and C2[Pk+1, ..., Pn] = hC 0
2[Pk+1, ..., Pn]il. Therefore, C[P1, ..., Pn] performs a ⌧ -

labelled transition to C 0
1[P1, ..., Pk]{C0

2[Pk+1, ..., Pn]/x} |0. The variable x does not ap-

pear in P1, ..., Pn, so C 0
1[P1, ..., Pk]{C0

2[Pk+1, ..., Pn]/x} = C 0
1{C0

2[Pk+1, ..., Pn]/x}[P1, ..., Pk].

Suppose now that the variable x occurs free h times in C 0
1 and let e = h · (n�k)+

3.3 Testing nondeterministic processes 73

k. Thus, we have that C 0
1{C0

2[Pk+1, ..., Pn]/x} |0[P1, ..., Pk] = C 0
1{C0

2/x} |0[P 0
1, ..., P

0
e],

where P 0
1, ..., P

0
e is a sequence of processes in {P1, ..., Pn} preserving the previous

substitutions in the e-ary context C 0
1{C0

2/x}.
Symmetrically, C[Q1, ..., Qn]

⌧�! C 0
1{C0

2[Qk+1, ..., Qn]/x}[Q1, ..., Qk] |0, which we can

rewrite as C 0
1{C0

2/x} |0[Q0
1, ..., Q

0
e], where P 0

i RQ0
i for all i such that 1 i e.

Therefore, C 0
1{C0

2/x} |0[P 0
1, ..., P

0
e]RC 0

1{C0
2/x} |0[Q0

1, ..., Q
0
e].

• C1[P1, ..., Pk]
e↵il�! S1, C2[Pk+1, ..., Pn]

e↵il�! S2 and, by rule (sinc), C[P1, ..., Pn]
⌧�!

S1 |S2.

The proof is similar to the previous case: C1[P1, ..., Pk]
e↵il�! implies that C1 is

the parallel composition of contexts such that at least one of them is of the form

eail .C 0
1, while C2 must be a parallel composition with a context of the form hC 0

2i
as a component.

We have showed that the first condition of the definition of ready simulation holds

if C = C1 |C2. Suppose now that C[Q1, ..., Qn]
µ�!. If C1[Q1, ..., Qk]

µ�! (re-

spectively: C2[Qk+1, ..., Qn]
µ�!) then by the hypothesis of induction we have that

C1[P1, ..., Pk]
µ�! (respectively: C2[Pk+1, ..., Pn]

µ�!), which in turn implies that the

process C[P1, ..., Pn] can perform a µ-labelled transition. If C[Q1, ..., Qn]
⌧�! and the

transition is derived from a synchronization, the complementary actions performed by

the two components of the parallel composition must be performed by C1[P1, ..., Pk]

and C2[Pk+1, ..., Pn] as well, as a consequence of the inductive hypothesis. Therefore,

C[Q1, ..., Qn]
µ�! implies that C[P1, ..., Pn]

µ�!, which means that the second condition

of the definition of ready simulation holds as well.

Theorem 3.5. Let P,Q be processes in an image-finite LTS T = hSt,N ,�!i. If P hr Q

then P vHOLn
may Q.

Proof. Let C be a unary HOLn-context. If P may pass C then there is an S such that

C[P] =) S
!�!, which in turn implies that for some n 2 N,

� = ⌧ . . . ⌧| {z }
n�times

! 2 Tr(C[P]).

By Theorem 3.4, P hr Q implies that C[P] hr C[Q], where hr is defined over the set of

actions A ⇤
⌧,!. It follows from Theorem 1.36, Theorem 1.31 and Theorem 1.18 that C[P]

and C[Q] are trace equivalent with respect to the set of actions A ⇤
⌧,!, so � 2 Tr(C[Q]).

Therefore, Q may pass C and we conclude that P vHOLn
may Q.

74 Chapter 3 Testing processes through higher-order languages

Lemma 3.6. Let P,Q be HOLn-processes such that P RQ, for some ready simulation

R defined over the set of actions A ⇤
⌧,!. For all n 2 N, if P RQ and P = S0

⌧�!
S1

⌧�! S2 . . .
⌧�! Sn and Si

!X�! for 0 i n then there are S0
0, . . . , S

0
n such that

Q = S0
0

⌧�! S0
1

⌧�! S0
2 . . .

⌧�! S0
n, S

0
i

!X�! and SiRS0
i for 0 i n.

Proof. By induction on n.

(n = 0) P RQ and, by definition of ready simulation, P
!X�! implies Q

!X�!.

(n = m+ 1) Let P = S0
⌧�! S1

⌧�! S2 . . .
⌧�! Sm+1 and Si

!X�! for 0 i m + 1.

By the inductive hypothesis, Q = S0
0

⌧�! S0
1

⌧�! S0
2 . . .

⌧�! S0
m, S0

i
!X�! and SiRS0

i

for 0 i m. It follows from Sm
⌧�! Sm+1 and SmRS0

m that S0
m

⌧�! S0
m+1, for

some S0
m+1 such that Sm+1RS0

m+1. R is a ready simulation, hence Sm+1
!X�! implies

S0
m+1

!X�!.

Theorem 3.7. Let P,Q be processes in an image-finite LTS T = hSt,N ,�!i. If P hr Q

then Q vHOLn
must P .

Proof. Suppose that P hr Q and that P must pass C does not hold, for some HOLn-

context C. By Theorem 3.4, C[P] hr C[Q], which implies that there is a ready simulation

R defined over the set of actions A ⇤
⌧,! such that C[P]RC[Q]. There are two cases.

• For some n 2 N, C[P] = S0
⌧�! S1

⌧�! S2 . . .
⌧�! Sn

⌧X�! and Si
!X�! for 0 i n.

By Lemma 3.6, there are S0
0, . . . , S

0
n such that C[Q] = S0

0
⌧�! S0

1
⌧�! S0

2 . . .
⌧�! S0

n,

S0
i

!X�! and SiRS0
i for 0 i n. It follows from Sn

⌧X�! and SnRS0
n that S0

n
⌧X�!.

Therefore, Q must pass C does not hold.

• There is an infinite path C[P] = S0
⌧�! S1

⌧�! S2 . . . such that Si
!X�! for all i � 0.

By Lemma 3.6, for every n 2 N there is a ⌧ -labelled path C[Q] = S0
0

⌧�! S0
1

⌧�!
S0
2 . . .

⌧�! S0
n such that S0

i
!X�! and SiRS0

i for 0 i n. If Sn
⌧�! Sn+1 then there

is an S0
n+1 such that S0

n
⌧�! S0

n+1 and Sn+1RS0
n+1, which implies S0

n+1
!X�!. The

path from C[P] is infinite, so this procedure can be repeated infinitely many times:

we start from some n 2 N and we build an infinite ⌧ -labelled path from C[Q] such

that no one state in the path performs !. Hence, Q must pass C does not hold in

this case as well.

3.3 Testing nondeterministic processes 75

3.3.3 Characterization of may-equivalence

We define a function translating RSL-formulas to HOLn-processes. Theorem 3.8 shows

that this encoding is correct and allows us to prove that may-equivalence coincides with

ready simulation equivalence on nondeterministic processes (Theorem 3.9).38

Let L be an infinite subset of N and let l 2 N be an atomic action which is not in L.

The function J·KlL mapping an RSL-formula F over N to a process in HOLn is defined by

structural induction on F :

J>KlL = !

J¬aKlL = eail .!

Jh a iF K = āil .JF KlL
JF1 ^ F2KlL = pass(x)l.hxil1 | JF1Kl1L1

{l1/!} | l̄1.(hxi2 | JF2Kl2L2
{l2/!}) | l̄2.!

where {l1, l2} ✓ L and L1, L2 are pairwise disjoint infinite subsets of L\{l1, l2}.
Let C l,L

F denote the HOLn-context h[·]il | JF KlL.

Theorem 3.8. Let T = hSt,N ,�!i be an image-finite LTS. For every process P in

T and for every RSL-formula F , P |= F if and only if C l,L
F [P] =) S

!�!, for some

HOLn-process S.

Proof. By induction on F .

(F = >) > is always true at P and C l,L
F [P] = hP il |! !�!.

(F = ¬a) If P |= ¬a then P
aX�! and we have that:

P
aX�!

(Oref)

hP il ēail�! 0

(Iref)

eail .! eail�! !
(sync)

C l,L
¬a [P]

⌧�! h0il |!

If P 6|= ¬a then P
a�! and eail .! cannot synchronize with hP il. Moreover, P does not

perform ⌧ -labelled transitions, so C l,L
¬a [P] never reaches a successful state through a

⌧ -labelled path.

(F = h a iF 0) P |= h a iF 0 implies that P 0 |= F 0, for some P 0 such that P
a�! P 0. Hence,

we have the following derivation:

38This result is inspired by the work of Bard Bloom, Sorin Istrail and Albert R. Meyer (Bloom, Istrail,
and Meyer 1995). The authors defined the family of GSOS rule systems, where processes can be copied
and actions can be refused, and proved that two processes P and Q are ready simulation equivalent if and
only if C[P] and C[Q] are trace equivalent for every GSOS-context C.

76 Chapter 3 Testing processes through higher-order languages

P
a�! P 0

(kell)

hP il ail�! hP 0il
(pref)

āil .JF 0KlL
āil�! JF 0KlL

(sync)
C l,L
F [P]

⌧�! hP 0il | JF 0KlL

By the inductive hypothesis, P 0 |= F 0 implies hP 0il | JF 0KlL =) S
!�! for some HOLn-

process S. Therefore, C l,L
F [P] =) S

!�!.

Suppose now that P 6|= h a iF 0. If P
aX�! then, symmetrically to the previous case (the

case when P 6|= ¬a), we have that C l,L
F [P]

⌧X�! and C l,L
F [P]

!X�!. If P
a�! P 0, then

P 0 6|= F 0. As above, we derive that C l,L
F [P]

⌧�! hP 0il | JF 0KlL, but it follows from the

inductive hypothesis on F 0 that C l,L
F 0 [P 0] = hP 0il | JF 0KlL never reaches a state performing

an !-labelled transition.

(F = F1 ^ F2) We have that:

C l,L
F [P 0] = hP il | JF1 ^ F2KlL = hP il | pass(x)l.(C l1,L1

F1
[x]{l1/!} | l̄1.(C l2,L2

F2
[x]{l2/!}) | l̄2.!)

and there is one and only one ⌧ -labelled transition that C l,L
F [P 0] can perform, i.e. the

transition derived as follows:

(Opass)

hP i
l

pass(P)l�! 0

(Ipass)

JF1 ^ F2Kl
L

pass(x)l�! Cl1,L1

F1
[x]{l1/!} | l̄1.(Cl2,L2

F2
[P]{l2/!}) | l̄2.!

(psync)
Cl,L

F

[P 0]
⌧�! 0 |Cl1,L1

F1
[P]{l1/!} | l̄1.(Cl2,L2

F2
[P]{l2/!}) | l̄2.!

Let A = 0 |C l1,L1
F1

[P]{l1/!} | l̄1.(C l2,L2
F2

[P]{l2/!}) | l̄2.!. If P |= F then P |= F1 and

P |= F2, which implies by the inductive hypothesis that there are HOLn-processes

S1, S0
1, S2, S0

2 such that C l1,L1
F1

[P] =) S1
!�! S0

1 and C l2,L2
F2

[P] =) S2
!�! S0

2. There-

fore,

C l,L
F [P 0]

⌧�! A =) 0 |S1{l1/!} | l̄1.(C l2,L2
F2

[P]{l2/!}) | l̄2.!
⌧�! 0 |S0

1{l1/!} |C l2,L2
F2

[P]{l2/!} | l̄2.!
=) 0 |S0

1{l1/!} |S2{l2/!} | l̄2.!
⌧�! 0 |S0

1{l1/!} |S0
2{l2/!} |!

!�!

Finally, suppose that P 6|= F1 ^ F2. By the inductive hypothesis, at least one of the

processes C l1,L1
F1

[P], C l2,L2
F2

[P] cannot reach a state performing ! by means of a ⌧ -labelled

path. If C l1,L1
F1

[P] fails to reach a successful state, then C l,L
F [P] =) S implies that

S = 0 |S1 | l̄1.C l2,L2
F2

[P]{l2/!} | l̄2.!, where S1
l1X�!. Otherwise, if C l1,L1

F1
[P] =) S1

!�!

3.3 Testing nondeterministic processes 77

then C l2,L2
F2

[P] fails. In this case, C l,L
F [P] =) S implies that S

l2X�!. So, it holds that

S
!X�! for every S such that C l,L

F [P] =) S.

Theorem 3.9. Let P,Q be processes in an image-finite LTS T = hSt,N ,�!i. P hr Q

if and only if P 'HOLn
may Q.

Proof.

()) The result follows from Theorem 3.5 and from the fact that hr is a symmetric

relation.

(() Suppose that P 6.r Q. It follows from Theorem 1.38 that there is a formula F of

Ready Simulation Logic such that P |= F and Q 6|= F . By Theorem 3.8, C l,L
F [P] =)

S
!�! for some HOLn-process S, while Q =) S0 implies S0 !X�!. Therefore, there

is a HOL-context C = C l,L
F such that > 2 S(C l,L

F [P]) and > 62 S(C l,L
F [Q]), which

implies that P 6vHOLn
may Q. Symmetrically, if Q 6.r P then Q 6vHOLn

may P and the result

follows by contraposition.

3.3.4 Characterization of testing equivalences

The results proved in the previous sections are summarized by Theorem 3.10: in the testing

scenario where the tests are HOL-contexts and the tested processes are nondeterministic

processes it holds that ready simulation equivalence coincides with both may-equivalence

and test-equivalence. As a corollary, we have that must-equivalence is included in all these

equivalences.

Theorem 3.10. Let P,Q be processes in an image-finite LTS T = hSt,N ,�!i. The

following statements are equivalent.

1. P hr Q

2. P 'HOLn
may Q

3. P 'HOLn
test Q.

Proof. (1) and (2) are equivalent by Theorem 3.9. By Theorem 3.7, (1) implies (3). By

the definition of 'HOLn
test , (3) implies (2).

78 Chapter 3 Testing processes through higher-order languages

3.4 Testing probabilistic reactive processes

Analogously to what we did in Section 3.3, we extend HOL to a new language by adding

to it an infine set of constant’s names. This time, we interpret these constants as reactive

probabilistic processes. Since we want these processes to satisfy the minimal deviation

assumption with respect to some minimal probability value ⇡, we fix this minimal value

from the beginning and we let Pr(LS) denote the class of probabilistic reactive processes

satisfying the minimal deviation assumption with respect to ⇡.

Definition 3.11. The terms of the language HOLp on A are defined by the following

grammar:

P ::= 0
��� x

��� S
��� ↵⇤.P

��� e↵il .P
��� !.P

��� P |P
��� hP il

��� pass(x)l.P

where S is (the name of) a process in the class Pr(LS) of reactive probabilistic processes

satisfying the minimal deviation assumption with respect to the minimal probability value

⇡.

The set Pr(HOLp) of HOLp-processes is the set of HOLp’s closed terms.

In what follows, we say that P is an LS-process (a “Larsen and Skou’s process”) if P is a

reactive probabilistic process in Pr(LS).

Let C be a HOLp-context where n distinct holes appear and let P1, ..., Pn be HOLp-terms.

We say that C is an n-ary HOLp-context and we write C[P1, ..., Pn] to denote the HOLp-

term obtained by substituting Pi to the i-th occurrence of [·] in C, for 1 i n.

For any l 2 N , P 0 2 HOLp and �1,�2 2 D(HOLp) we define the distributions �1 |�2,

h�1il and �1 |�2{P 0/x} on HOLp-terms as follows:

�1 |�2(P) =

8
<

:
�1(P1) ·�2(P2) if P = P1 |P2

0 else

h�1il(P) =

8
<

:
�1(P 0) if P = hP 0il
0 else

�1 |�2{P 0/x}(P) = �1 |�2(P{P 0/x}).

The operational semantic of the language HOLp on N is defined by the LTS

hPr(HOLp),A HOL,�!i,

where A HOL = A ⇤
⌧,! [fN ⇤ [{pass(⇢)l| ⇢ 2 Pr(HOLp)[V and l 2 N } and the transition

relation is given by the rules in figure 3.2.

3.4 Testing probabilistic reactive processes 79

S
a�!0

�
(LS)

S
a�! �

where �!0 is the

transition relation

of the pLTS for S

(pref)µ2A ?[{!}
µ.P

µ�! P

(Iref)

e↵il .P
e↵il�! P

P
↵X�! and P is stable

(Oref)

hP il e↵il�! 0

P1
µ�! �1

(parL)µ2A HOLp

P1 |P2
µ�! �1 |P2

P1
µ�! �1

(parR)µ2A HOLp

P2 |P1
µ�! P2 |�1

P1
µ�! �1 P2

µ̄�! �2 (sync)
µ2A ?[eA ?

P1 |P2
⌧�! �1 |�2

P
↵�! �

(kell)

hP il ↵il�! h�il
P

⌧�! �
(⌧kell)

hP il ⌧�! h�il

(Ipass)

pass(x)l.P
pass(x)l�! P

(Opass)

hP il pass(P)l�! 0

P1
pass(⇢1)l�! �1 P2

pass(⇢2)l�! �2
(psync)

P1 |P2
⌧�! �1 |�2{P/x}

where either ⇢1 = P and ⇢2 = x

or ⇢1 = x and ⇢2 = P

Figure 3.2: SOS for processes in HOLp.

3.4.1 Testing preorders on probabilistic processes

We now consider the testing scenario hPr(LS), Ctx(HOL), [0, 1],Succi, where the appli-

cation of a test C to an LS-process P is the substitution of P to the holes in C, i.e.

there is a function S : Pr(HOLp) ! P+([0, 1]) such that Succ(C,P) = S(C[P]). The

problem in defining S is that, in general, a HOLp process C[P], where C 2 Ctx(HOL) and

P 2 Pr(LS), is not a reactive probabilistic process. Therefore, we introduce oracles, i.e.

schedulers which allow the resolution of the nondeterministic choices in the probabilistic

80 Chapter 3 Testing processes through higher-order languages

Labelled Transition System for HOLp.

Definition 3.12. Let O be a function assigning a probability distribution on Pr(HOLp)

to every n-tuple of HOLp-processes < P1, P2, ..., Pn >, for all n 2 N. We say that O is an

oracle on Pr(HOLp) if O(< P1, ..., Pn >) = � implies that Pn
⌧�! �.

For a given HOLp-process P , we define by induction on n 2 N when < P1, ..., Pn >2
path(O, P):

- < P >2 path(O, P),

- if < P1, ..., Pn >2 path(O, P), Pn
⌧�! and P 0 2 dO(< P1, ..., Pn >)e then <

P1, ..., Pn, P 0 >2 path(O, P).

The set !path(O, P) of all the successful computations from P with respect to O is the

set:

{< P1, ..., Pn > |n 2 N, < P1, ..., Pn >2 path(O, P), Pn
!�! and Pi

!X�! for 1 i < n}.

The function SO : Pr(HOLp) ! [0, 1] associates to a process P its probability of reaching

a successful state, relatively to the oracle O:

SO(P) =
X

<P1,...,Pn>2!path(O,P)

Qn�1
i=1 O(Pi)(Pi+1)

where SO(P) = 0 if !path(O, P) = ;.
The set of probabilities of success of P is obtained by considering all possible oracles on

Pr(HOLp):

S(P) = {SO(P)|O is an oracle on Pr(HOLp)}.
We can now restate the testing preorders defined in Section 3.1 as follows:

P vHOLp
may Q i↵ 8C 2 Ctx(HOL)

G
S(C[P])

G
S(C[Q])

P vHOLp
must Q i↵ 8C 2 Ctx(HOL)

l
S(C[P])

l
S(C[Q])

P vHOLp
test Q i↵ P vT

may Q and P vT
must Q.

Given a class Pr(LS) of LS-processes, we prove (Theorem 3.29) that probabilistic bisimi-

larity on this class of processes coincides with both may-equivalence and must-equivalence

in the testing scenario hPr(LS), Ctx(HOL), [0, 1],Succi defined above.

The following two sections are devoted to the proof of this result. In Section 3.4.2 we show

that if P and Q are LS-processes which are not probabilistically bisimilar, then there is a

HOL-context C such that C[P] and C[Q] are neither may-equivalent nor must-equivalent.

In Section 3.4.3 we prove the opposite implication: probabilistically bisimilar LS-processes

are test-equivalent.

3.4 Testing probabilistic reactive processes 81

3.4.2 HOL-contexts discriminate non-probabilistically bisimilar processes

Let L be an infinite subset of N and l 62 L. The function J·KlL mapping pairs < t, e >,

where t is a test in TLS defined over the set of actions N and e 2 Ot, to processes in

HOLp is defined by structural induction on t:

J< !, 1! >KlL = !

J< a.t, 0a >KlL = eail .!

J< a.t, 1a : e >K = āil .J< t, e >KlL
J< (t1, ..., tn), (e1, ..., en) >KlL =

= pass(x)l.hxil1 | J< t1, e1 >Kl1L1
{l1/!} |

n>>>>>>
>>>>>>

i=2

(l̄i�1.(hxili | J< ti, ei >KliLi
{li/!})) | l̄n.!

where {l1, l2} ✓ L and L1, ..., Ln are pairwise disjoint infinite subsets of L\{l1, l2}.
Let C l,L

<t,e> denote the HOL-context h[·]il | J< t, e >KlL. We want to show that the process

C l,L
<t,e>[P] (i.e. the process obtained by filling the hole of C l,L

<t,e> with an LS-process) is

suitable for playing the role that < t, e > plays when applied to P in the Larsen and

Skou’s testing scenario.

As illustrated by Example 3.13, it turns out that C l,L
<t,e>[P] could be a nondeterministic

probabilistic process.

Example 3.13. Consider the following translation:

J< (a.!, b.!), (1a : 1!, 1b : 1!) >KlL =

= pass(x)l.hxil1 | J< a.!, 1a : 1! >Kl1L1
{l1/!} | l̄1.(hxil2 | J< b.!, 1b : 1! >Kl2L2

{l2/!}) | l̄2.! =

= pass(x)l.hxil1 | āil1 .! | l̄1.(hxil2 | b̄il2 .!) | l̄2.!

and the LS-process P such that P
a�! P and P

b�! P . We have

C l,L
<(a.!,b.!),(1a:1! ,1b:1!)>

[P]
⌧�! hP il1 | āil1 .l1 | l̄1.(hP il2 | b̄il2 .!) | l̄2.! |0

and

hP il1 | āil1 .l1 | l̄1.(hP il2 | b̄il2 .!) | l̄2.! |0 l̄1�! hP il1 | āil1 .l1 | hP il2 | b̄il2 .! | l̄2.! |0,

where hP il1 | āil1 .l1 | hP il2 | b̄il2 .! | l̄2.! |0 can perform a ⌧ -labelled transition both to the

distribution hP il1 | l1 | hP il2 | b̄il2 .! | l̄2.! |0 and to hP il1 | āil1 .l1 | hP il2 |! | l̄2.! |0.

Nevertheless, we can prove that the process C l,L
<t,e>[P] is ⌧ -reactive, that is, C l,L

<t,e>[P] is

reactive if we consider only the ⌧ -labelled paths from C l,L
<t,e>[P].

82 Chapter 3 Testing processes through higher-order languages

Definition 3.14. The relation =) on HOLp-processes is the smallest relation closed under

the following rules:

P =) P
P

⌧�! � P 0 2 d�e P 0 =) P 00

P =) P 00

We say that a process P is ⌧ -reactive if whenever P =) P 0 we have that:

P 0 ⌧�! �1 and P 0 ⌧�! �2 implies �1 = �2

for all P 0 2 HOLp and �1,�2 2 D(HOLp).

Theorem 3.15. Let P be an LS-process. The HOLp-process C l,L
<t,e>[P] is a ⌧ -reactive

probabilistic process.

Proof. We prove by induction on < t, e > that for every S 2 Pr(HOLp) such that

C l,L
<t,e>[P] =) S the following properties hold:

(1) if S
⌫�! then either ⌫ 2 L [L [{!, ⌧} or ⌫ is of the form ↵ih , e↵ih , e↵ih , pass(x)h

or pass(Q)h, where h 2 L [{l},

(2) if S
!�! �1 and S

!�! �2 then �1 = �2, S
⌧X�! and for every S0 2 d�1e, S0 ⌧X�!

and S0 !X�!,

(3) if S
⌧�! �1 and S

⌧�! �2 then �1 = �2.

The proof is by structural induction on < t, e >. We only consider the two non-trivial

cases:

(< t, e >=< a.t0, 1a : e0 > and P
a�! �) If S = C l,L

<t,e>[P], then the result follows from

the fact that P is an LS-process, so P
⌧X�!, P

!X�! and there is one and only one

⌧ -labelled transition from C l,L
<t,e>[P], i.e. the transition derived as follows:

P
a�! �

(kell)

hP il ail�! h�il
(pref)

āil .J< t0, e0 >KlL
āil�! J< t0, e0 >KlL

(sync)
C l,L
<t,e>[P]

⌧�! h�il | J< t0, e0 >KlL

Suppose that C l,L
<t,e>[P]

⌧�! �0 and for some S0 2 �0, S0 =) S. Then �0 =

h�il | J< t0, e0 >KlL and S0 = C l,L
<t0,e0>[P

0], for some P 0 2 d�e. The result follows from

the inductive hypothesis.

3.4 Testing probabilistic reactive processes 83

(< t, e >=< (t1, ..., tn), (e1, ..., en) >) By induction on n.

If n = 2 there is one and only one ⌧ -labelled transition from C l,L
<t,e>[P], leading to the

probability distribution:

hP il1 | J< t1, e1 >Kl1L1
{l1/!} | l̄1.(hP il2 | J< t2, e2 >Kl2L2

{l2/!}) | l̄2.! |0

which is equal to C l1,L1
<t1,e1>

[P] | l̄1.C l2,L2
<t2,e2>

[P] | l̄2.! |0. Hence, if S = C l,L
<t,e>[P] then the

conditions (1) and (2) immediately follow; condition (3) holds because of the inductive

hypothesis on C l1,L1
<t1,e1>

[P] and because of the fact that L1 [{l1, l̄1, l2, l̄2} ✓ L.

Let A = C l1,L1
<t1,e1>

[P] | l̄1.C l2,L2
<t2,e2>

[P] | l̄2.! |0. If C l,L
<t,e>[P] �! �0 and S0 =) S, for

some S0 2 �0, then �0 = A, where A
!X�!.

A =) S implies that S satisfies one of the following conditions:

(a) the subprocess C l1,L1
<t1,e1>

[P] of S has not yet reported success, so S = S1 |S2, where

C l1,L1
<t1,e1>

[P] =) S0
1, S1 = S0

1{l1/!} and S2 = l̄1.C
l2,L2
<t2,e2>

[P] | l̄2.! |0.
The first condition follows immediately from the relative hypothesis of induction,

while the second property is vacuously satisfied because S
!X�!.

If S0
1

⌧�! then S0
1

!X�!, by the inductive hypothesis of (2). By the inductive hy-

pothesis of (1), the transitions leaving S1 and S2 have labels that do not allow

synchronizations between the two processes. Therefore, S
⌧�! if and only if S1

⌧�!
and it follows from the inductive hypothesis of (3) that the third condition holds.

If S0
1

!�! � then S0
1

⌧X�!, S1
l1�! � and there is one and only one ⌧ -transition

from S (as above, this is a consequence of the three hypothesis of induction), i.e.

the transition to � | l̄1.C l2,L2
<t2,e2>

[P] | l̄2.! |0. Hence, (3) holds in this case too.

(b) the subprocess C l1,L1
<t1,e1>

[P] of S reported succes, which implies that S = S1 |S2,

where C l1,L1
<t1,e1>

[P] =) S0
1, S

0
1

!�! �, S1 2 d�e and C l2,L2
<t2,e2>

[P]{l2/!} =) S2.

The proof is similar to the previous one.

The result for the case when < t, e >=< (t1, ..., tn+1), (e1, ..., en+1) > follows analo-

gously by applying the inductive hypothesis on n instead of the one on < t2, e2 >.

If P is a ⌧ -reactive probabilistic process then the function SO returns the same probability

of success on P for every oracle O on Pr(HOLp). Thus, oracles are superfluous in this

case and S(P) = {SO(P)} = {S(P)} for all oracles O on Pr(HOLp), where:

S(P) =
X

<P1,...,Pn>2!path(P)

Qn�1
i=1 �i(Pi+1)

84 Chapter 3 Testing processes through higher-order languages

and the set of the successful paths from P is redefined as follows:

!path(P) = {< P1, ..., Pn > |P1 = P, Pn
!�! and there is a �i such that Pi

⌧�! �i,

Pi+1 2 d�ie and Pi
!X�! for every i such that 1 i n� 1}.

Theorem 3.16. Let t be a test in TLS and e 2 Ot. For every LS-process P ,

Pt,P (e) = S(C l,L
<t,e>[P]).

Proof. By structural induction on < t, e >.

(< t, e >=< !, 1! >) !path(C l,L
<t,e>[P]) = {< hP il |! >}, so we have that P!,P (1!) =

1 = S(C l,L
<t,e>[P]).

(< t, e >=< a.t0, 0a >) P
⌧X�!, hence C l,L

<t,e>[P]
⌧�! if and only if P

aX�!. If P can

perform an a-labelled transition then !path(C l,L
<t,e>[P]) = ; and Pa.t0,P (0a) = 0 =

S(C l,L
<t,e>[P]). If P

aX�! then hP il eail�! 0 and C l,L
<t,e>[P]

⌧�! 0 |!. As a consequence,

!path(C l,L
<t,e>[P]) = {< C l,L

<t,e>[P], 0 |! >} and both expressions are equal to 1.

(< t, e >=< a.t0, 1a : e0 >) If P cannot perform an a-labelled transition then both ex-

pressions are equal to 1, dually to the first part of the previous case.

Suppose now that P
a�! �. The only ⌧ -labelled transition from C l,L

<t,e>[P] leads to the

probability distribution h�il | J< t0, e0 >KlL , where S 2 dh�il | J< t0, e0 >KlLe if and only

if S = hP 0il | J< t0, e0 >KlL = C l,L
<t0,e0>[P

0] and P 0 2 d�e. Therefore,

S(C l,L
<t,e>[P]) =

=
X

<P1,...,Pn>2!path(Cl,L
<t,e>[P])

Qn�1
i=1 �i(Pi+1)

=
X

{<P2,...,Pn>|<P1,...,Pn>2!path(Cl,L
<t,e>[P])}

�(P2) ·
Qn�1

i=2 �i(Pi+1)

=
X

{P 02d�e|!path(Cl,L
<t0,e0>[P 0]) 6=;}

�(P 0) ·P
<P1,...,Pn>2!path(Cl,L

<t0,e0>[P 0])

Qn�1
i=1 �Pi(Pi+1)

=
X

{P 02d�e|!path(Cl,L
<t0,e0>[P 0]) 6=;}

�(P 0) · S(C l,L
<t0,e0>[P

0])

=
X

{P 02d�e|!path(Cl,L
<t0,e0>[P 0]) 6=;}

�(P 0) · Pt0,P 0(e0) (by HI).

For any P 0, !path(C l,L
<t0,e0>[P

0]) = ; if and only if S(C l,L
<t0,e0>[P

0]) = 0 if and only if (by

3.4 Testing probabilistic reactive processes 85

the inductive hypothesis) Pt0,P 0(e0) = 0. Therefore,

X

{P 02d�e|!path(Cl,L
<t0,e0>[P 0]) 6=;}

�(P 0) · Pt0,P 0(e0)

=
X

P 02d�e

�(P 0) · Pt0,P 0(e0)

= Pa.t0,P (1a : e0).

(< t, e >=< (t1, ..., tn), (e1, ..., en) >) By induction on n.

If n = 2 then we have that:

S(C l,L
<t0,e0>[P

0]) = S(C l1,L1
<t1,e1>

[P]{l1/!} | l̄1.(C l2,L2
<t2,e2>

[P]{l2/!}) | l̄2.! |0)

Let A = C l1,L1
<t1,e1>

[P]{l1/!} | l̄1.(C l2,L2
<t2,e2>

[P]{l2/!}) | l̄2.! |0. By using Theorem 3.15 it is

easy to check that < S1, ..., Sn >2 !path(A) if and only if there are m, k 2 N such that

n = m+ k + 1 and:

- for all 1 i m, Si = S0
i{l1/!} | l̄1.(C l2,L2

<t2,e2>
[P]{l2/!}) | l̄2.! |0 and< S0

1, ..., S
0
m >2

!path(C l1,L1
<t1,e1>

[P]);

- for all m + 1 i m + k, Si = S0 |S00
i {l2/!} | l̄2.! |0, where S0

m{l1/!} l1�! S0 and

< S00
m+1, ..., S

00
m+k >2 !path(C l2,L2

<t2,e2>
);

- Sm+k+1 = S0 |S00 |!, where S00
m+k

l2�! S00.

Hence,

S(A) =

=
X

<P1,...,Pn>2!path(A)

Qn�1
i=1 �i(Pi+1)

=
X

<S0
1,...,S

0
m>2!path(Cl1,L1

<t1,e1>
[P])

⇣Qm�1
i=1 �i(S0

i+1) · Sm+1(Sm+1) ·
P

<S00
1 ,...,S

00
k>2!path(Cl2,L2

<t2,e2>
[P])

Qk�1
i=1 �i(S00

i+1)
⌘

=
X

<S0
1,...,S

0
m>2!path(Cl1,L1

<t1,e1>
[P])

Qm�1
i=1 �i(S0

i+1) ·
X

<S00
1 ,...,S

00
k>2!path(Cl2,L2

<t2,e2>
[P])

Qk�1
i=1 �i(S00

i+1)

= Pt1,P (e1) · Pt2,P (e2) (by HI)

= P(t1,t2),P ((e1, e2))

The result follows analogously for the inductive case on n.

86 Chapter 3 Testing processes through higher-order languages

Corollary 3.17. For all LS-processes P,Q, P 'HOLp
may Q implies P ⇠ Q and P 'HOLp

must Q

implies P ⇠ Q.

Proof. By Theorem 2.18, if P 6⇠ Q then there are a test t 2 TLS and an observation e 2 Ot

such that Pt,P (e) 6= Pt,Q(e). It follows from Theorem 3.15 and Theorem 3.16 that:

G
S(C l,L

<t,e>[P]) =
l

S(C l,L
<t,e>[P]) = {Pt,P (e)}

and
G

S(C l,L
<t,e>[Q]) =

l
S(C l,L

<t,e>[Q]) = {Pt,Q(e)}.

Therefore, P 6'HOLp
may Q and P 6'HOLp

must Q.

3.4.3 Probabilistic bisimilarity implies test-equivalence

This section is devoted to proving that probabilistically bisimilar LS-processes are testing

equivalent. To this end, we first show that the processes C[P] and C[Q] obtained by

filling the empty hole of a unary HOL-context C with two probabilistically bisimilar LS-

processes P,Q are probabilistically bisimilar as well, with respect to the set actions A ⇤
⌧,!

(Theorem 3.18). As a consequence, proving that the sets of probabilities of success of

probabilistically bisimilar HOLp-processes have the same suprema and infima (Corollary

3.28) turns out to be su�cient for our purposes.

Substitutivity of first-order bisimilarity

Theorem 3.18. For any n 2 N, let P1, ..., Pn, Q1, ..., Qn be LS-processes such that Pi ⇠ Qi,

for 1 i n. For every n-ary HOL-context C, C[P1, ..., Pn] ⇠ C[Q1, ..., Qn], where ⇠ is

defined on A ⇤
⌧,!.

Proof. Consider the following relation on HOLp-processes:

R = {< C[P1, ..., Pn], C[Q1, ..., Qn] > |n 2 N, C is an n-ary HOL-context,

{P1, ..., Pn, Q1, ..., Qn} ✓ Pr(LS) and Pi ⇠ Qi for 1 i n}.

In order to show that R is a probabilistic bisimulation, we prove by structural induction

on C that for every n 2 N, if C is an n-ary HOL-context and C[P1, ..., Pn]RC[Q1, ..., Qn]

then:

1. for every µ 2 A ⇤
⌧,! and for every � 2 D(Pr(HOLp)), if C[P1, ..., Pn]

µ�! � then

C[Q1, ..., Qn]
µ�! ⇥ and �R⇥, for some distribution ⇥ 2 D(Pr(HOLp)),

2. the symmetric condition.

3.4 Testing probabilistic reactive processes 87

(C = [·]) C is a unary context and C[P] = P ⇠ Q = C[Q]. If P1
µ�! � then there

is a ⇥ such that Q
µ�! ⇥ and �⇠⇥. Both � and ⇥ are probability distributions

on LS-processes and an LS-process P 0 2 d�e is equal to the substitution of P 0 in the

context [·]. Hence, �R⇥. Bisimilarity is an equivalence relation, so the symmetric

condition holds as well.

(C = !.C 0), (C = ↵⇤.C 0) The result follows directly from the inductive hypothesis on

C 0.

(C = e↵⇤.C 0), (C = pass(x)l.C 0) The processes cannot perform transitions labelled with

actions in A ⇤
⌧,!, hence they vacuously satisfy the two conditions.

(C = hC 0il) hC 0il[P1, ..., Pn] = hC 0[P1, ..., Pn]il and there are two cases:

• C 0[P1, ..., Pn]
↵�! �, so by rule (kell) we have that hC 0[P1, ..., Pn]il ↵l�! h�il. It

follows from the inductive hypothesis that there is a probability distribution ⇥

such that hC 0[Q1, ..., Qn]il ↵l�! h⇥il, where �R⇥. By the definition of R we

have that � =
Py

k=1 pk · Sk and ⇥ =
Py

k=1 pk · S0
k, where Sk RS0

k for all k,

i.e. there is an m 2 N and there are LS-processes P 0
1, ..., P

0
m, Q0

1, ..., Q
0
m such that

Sk = Ck[P 0
1, ..., P

0
m], S0

k = Ck[Q0
1, ..., Q

0
m] and P 0

i RQ0
i, for every i from 1 to m.

Therefore, h�il =
Py

k=1 pk · hCk[P 0
1, ..., P

0
m]il, h⇥il =

Py
k=1 pk · hCk[Q0

1, ..., Q
0
m]il

and

hCk[P
0
1, ..., P

0
m]il = hCkil[P 0

1, ..., P
0
m] R hCkil[Q0

1, ..., Q
0
m] = hCk[Q

0
1, ..., Q

0
m]il.

• C 0[P1, ..., Pn]
⌧�! � and hC 0[P1, ..., Pn]il ⌧�! h�il, by rule (⌧kell). The proof is

analogous to the previous one.

(C = C1 |C2) C[P1, ..., Pn] = C1[P1, ..., Pk] |C2[Pk+1, ..., Pn] and there are five possible

cases:

• C1[P1, ..., Pk]
µ�! � and we derive that C[P1, ..., Pn]

µ�! � |C2[Pk+1, ..., Pn], by

rule (parL).

By the inductive hypothesis there is a⇥ such that C1[Q1, ..., Qk]
µ�! ⇥ and�R⇥;

by (parL) we derive that C1[Q1, ..., Qk] |C2[Qk+1, ..., Qn]
µ�! ⇥ |C2[Qk+1, ..., Qn].

The result follows analogously to the case (C = hC 0il).
• C2[Pk+1, ..., Pn]

µ�! � and, by rule (parR), C[P1, ..., Pn]
µ�! C1[P1, ..., Pk] |�.

Symmetrical to the previous case.

• C1[P1, ..., Pk]
↵⇤�! �1, C2[Pk+1, ..., Pn]

↵̄⇤�! �2 and C[P1, ..., Pn]
⌧�! �1 |�2. By

using the inductive hypothesis we can conclude that there are two finite index-sets

I, J such that:

88 Chapter 3 Testing processes through higher-order languages

- �1 |�2 =
P

<i,j> p1i · p2j · C1i [P
0
1, ..., P

0
m1

] |C2j [P
00
1 , ..., P

00
m2

],

- C[Q1, ..., Qn]
⌧�! ⇥1 |⇥2, where:

⇥1 |⇥2 =
X

<i,j>

p1i · p2j · C1i [Q
0
1, ..., Q

0
m1

] |C2j [Q
00
1, ..., Q

00
m2

],

- for every pair < i, j >,

C1i [P
0
1, ..., P

0
m1

] |C2j [P
00
1 , ..., P

00
m2

] =

= C1i |C2j [P
0
1, ..., P

0
m1

, P 00
1 , ..., P

00
m2

] R C1i |C2j [Q
0
1, ..., Q

0
m1

, Q00
1, ..., Q

00
m2

] =

= C1i [Q
0
1, ..., Q

0
m1

] |C2j [Q
00
1, ..., Q

00
m2

].

Therefore, �1 |�2R⇥1 |⇥2.

• C1[P1, ..., Pk]
pass(x)l�! �1, C2[Pk+1, ..., Pn]

pass(S)l�! �2 and by rule (psync) we derive

that C[P1, ..., Pn]
⌧�! �1 |�2{S/x}.

P1, ..., Pn cannot perform higher-order actions, hence C1[P1, ..., Pk]
pass(x)l�! implies

that C1 is the parallel composition of contexts such that at least one of them is

of the form pass(x)l.C 0
1. Analogously, if C2[Pk+1, ..., Pn]

pass(S)l�! then C2 is the

parallel composition of contexts such that at least one of them is of the form hC 0
2i.

For the sake of simplicity, suppose that C1[P1, ..., Pk] = pass(x)l.C 0
1[P1, ..., Pk] and

C2[Pk+1, ..., PPn] = hC 0
2[Pk+1, ..., Pn]il. The probability distributions �1 and �2

must be C 0
1[P1, ..., Pk] and 0, respectively. Therefore, the distribution reached by

C[P1, ..., Pn] is C 00
1 [P1, ..., Pk]{C0

2[Pk+1, ..., Pn]/x} |0. The variable x does not appear

in P1, ..., Pn, so C 00
1 [P1, ..., Pk]{C0

2[Pk+1, ..., Pn]/x} = C 00
1 {C0

2[Pk+1, ..., Pn]/x}[P1, ..., Pk].

Suppose that x occurs free h times in C 0
1 and let e = h · (n � k) + k. Thus,

C 0
1{C0

2/x} is an e-ary context and we have that C 0
1{C0

2[Pk+1, ..., Pn]/x} |0[P1, ..., Pk] =

C 0
1{C0

2/x} |0[P 0
1, ..., P

0
e], where P

0
1, ..., P

0
e is a sequence of LS-processes in {P1, ..., Pn}

preserving the previous substitutions.

Symmetrically, the process C[Q1, ..., Qn] performs a ⌧ -labelled transition to the

probability distribution C 00
1 {C0

2[Qk+1, ..., Qn]/x}[Q1, ..., Qk] |0, which we can rewrite

as C 0
1{C0

2/x} |0[Q0
1, ..., Q

0
e], where P 0

i ⇠ Q0
i for all i such that 1 i e. Therefore,

C 0
1{C0

2/x} |0[P 0
1, ..., P

0
e] R C 0

1{C0
2/x} |0[Q0

1, ..., Q
0
e].

• C1[P1, ..., Pk]
e↵il�! �1, C2[Pk+1, ..., Pn]

e↵il�! �2 and by rule (sync) we derive that

C[P1, ..., Pn]
⌧�! �1 |�2.

The proof is similar to the one of the previous case: C1[P1, ..., Pk]
eail�! implies that

C1 is the parallel composition of contexts such that at least one of them is of the

form eail .C 0
1, while C2 must be a parallel composition with a context of the form

3.4 Testing probabilistic reactive processes 89

hC 0
2i as a component.

As mentioned above, it remains to prove that:

(*) whenever P and Q are probabilistically bisimilar (with respect to the set

of actions A ⇤
⌧,!) HOLp-processes then

F
S(P) =

F
S(P) and

d
S(P) =

d
S(Q).

A first source of di�culty lies in the possibility that HOLp-processes exhibit a divergent

behavior.

Example 3.19. Consider the following processes:

V = pass(x)l.(x | hxil)
W = ā.b̄.! |P
Z = V | hV |W il

where P is the LS-process such that P
a�! (12 · P + 1

2 · P 0) and P 0 b�! P 0. We have

Z
⌧�! V |W | hV |W il |0

V |W | hV |W il |0 ⌧�! (
1

2
· V | b̄.! |P | hV |W il |0+

1

2
· V | b̄.! |P 0 | hV |W il |0).

where

V | b̄.! |P 0 | hV |W il |0 ⌧�!V |! |P 0 | hV |W il |0
V |! |P 0 | hV |W il |0 !�! .

The process V | b̄.! |P | hV |W il |0 is bisimilar to b̄.! |P |Z, thus the sequence of transi-

tions depicted so far can be repeated infinitely many times. Therefore, there exists an

oracle O (i.e. the oracle which always chooses to repeat this sequence) such that there is

not a maximal length of the successful paths !path(O, Z) from Z.

Example 3.19 shows that we cannot prove (*) by induction on the maximal length of the

successful paths from a process with respect to a given oracle. Moreover, the recursive

behavior of Z suggests that a proof by induction on contexts would not be possible as

well.

We thereby take a di↵erent approach.39

39The fixed-point approach presented in the following pages exploits some ideas developed in (Deng et
al. 2009). In the cited work, the authors deal with finitary probabilistic LTSs, that is, probabilistic LTSs
whose set of states is finite but admitting loops. In (Deng et al. 2007) and (Deng et al. 2008), loop-free
and finite-state probabilistic LTSs are analyzed.

90 Chapter 3 Testing processes through higher-order languages

A fixed-point approach

For the sake of simplicity, we will henceforth assume that the probabilistic LTSs for the

processes we consider are trees; in fact, it is easy to check that both bisimilarity and the

testing equivalences on HOLp-processes are preserved by unfolding.

Let Tree(Pr(HOLp)) be the set of nodes (or states) in a forest of trees (representing the

unfolded LTS for HOLp). The advantage of using tree-like processes is that an oracle on

Tree(Pr(HOLp)) can be easily defined as a function assigning to every state P such that

P
⌧�! a distribution � such that P

⌧�! �. In order to satisfy the history-dependence

of the schedulers, the oracles are no longer required to take into account the di↵erent

paths that can lead to a process. This feature is essential for the theory we are going to

introduce.

The set [0, 1]Tree(Pr(HOLp)) of functions from states in Tree(Pr(HOLp)) to [0, 1] equipped

with the usual order on functions is a complete lattice.40 The bottom ? and top >
elements of the complete lattice are the functions assigning 0 and 1 to every state, respec-

tively. For every oracle O, let the functional FO : [0, 1]Tree(Pr(HOLp)) ! [0, 1]Tree(Pr(HOLp))

be defined as follows:

FO(f)(P) =

8
>>><

>>>:

1 if P
!�!

0 if P
!X�! and P

⌧X�!
P

P 02dO(P)e O(P)(P 0) · f(P 0) if P
!X�! and P

⌧�!.

For any sequence {↵i}i2I in a poset, define:

G

i

↵i =
G

{↵i| i 2 I}.

Lemma 3.20. Let S be a set and {fi}i2N be a non-decreasing sequence of functions in

[0, 1]S. For every finite subset S0 of S,

G

i

X

s2S0

fi(s) =
X

s2S0

G

i

fi(s).

Proof. Let r be a non-negative real number. For every s 2 S0 there is an is 2 N such that

for every j � i,
F

i fi(s)� fj(s) r. Suppose that |S0| = n. Then there is an is 2 N such

that for every j � is,
F

i fi(s)� fj(s) r
n , for every s 2 S0. Let m = max{is| s 2 S0}. It

40In what follows, we will avail ourselves of some definitions and results summarized in Appendix A. We
refer the reader to (Sangiorgi 2012a) and to (Davies and Priestley 2002) for a thorough presentation of the
theory of ordered sets.

3.4 Testing probabilistic reactive processes 91

follows that for every s 2 S0 and for every j � m,
F

i fi(s)� fj(s) r
n . Therefore,

(
X

s2S0

G

i

fi(s))�
X

s2S0

fj(s) =
X

s2S0

G

i

fi(s)� fj(s) r

for every j � m and the result follows.

Theorem 3.21. For every oracle O on Tree(Pr(HOLp)), the functional FO is continuous.

Proof. Let {fi}i2N be a non decreasing sequence of functions in [0, 1]Tree(Pr(HOLp)). We

prove that for every P 2 Tree(Pr(HOLp)),

(
G

i

FO(fi))(P) = FO(
G

i

fi)(P).

If P
!�! then FO(fi)(P) = 1 for all i � 0. Hence, (

F
i FO(fi))(P) =

F
i FO(fi)(P) =

F
i 1 = 1 = FO(

F
i fi)(P). Similarly, P

!X�! and P
⌧X�! imply that (

F
i FO(fi))(P) = 0 =

FO(
F

i fi)(P).

Suppose now that P
!X�! and P

⌧�!.

FO(
G

i

fi)(P) =
X

P 02dO(P)e

O(P)(P 0) · (
G

i

fi)(P
0) =

=
X

P 02dO(P)e

O(P)(P 0) ·
G

i

fi(P
0) =

=
X

P 02dO(P)e

G

i

O(P)(P 0) · fi(P 0).

For any i, let Fi : dO(P)e ! [0, 1] be the function such that Fi(P 0) = O(P)(P 0) · fi(P 0). If

i j then fi(P 0) fj(P 0), so O(P)(P 0) ·fi(P 0) O(P)(P 0) ·fj(P 0), for any P 0 2 dO(P)e.
Therefore, the sequence of functions {Fi}i2N is non-decreasing and by Lemma 3.20 we

have that:

X

P 02dO(P)e

G

i

O(P)(P 0) · fi(P 0) =
G

i

X

P 02dO(P)e

O(P)(P 0) · fi(P 0) =

=
G

i

FO(fi)(P) =

= (
G

i

FO(fi))(P).

It follows from Theorem 3.21 and from the Continuity Theorem on complete lattices that

the functional FO has a least fixed point FO such that FO =
F

n�0 Fn
O(?).

92 Chapter 3 Testing processes through higher-order languages

Theorem 3.22. For every oracle O on Tree(Pr(HOLp)), SO = FO .

Proof. We prove that:

(1) SO is a fixed point of FO

(2) SO FO

The function FO is the least fixed point of FO , so (by 1) we have that FO SO . Hence,

the result follows from the second point.

(1) If P
!�! (or P

!X�! and P
⌧X�!) then FO(SO)(P) = SO(P). Let P

!X�! and P
⌧�!.

Then:

FO(SO)(P) =
X

P 02dO(P)e

O(P)(P 0) · SO(P 0).

It is easy to check that SO(S) > 0 if and only if !path(O, S) 6= ;, for any process S.

Thus,

X

P 02dO(P)e

O(P)(P 0) · SO(P 0) =
X

{P 02dO(P)e|!path(O,P 0) 6=;}

O(P)(P 0) · SO(P 0) =

=
X

<P1,...,Pn>2!path(O,P)

Qn�1
i=1 O(Pi)(Pi+1) =

= SO(P).

(2) Let A = {pt1, ..., ptk} be a finite subset of !path(O, P) and let max(A) = max{n| <
P1, ..., Pn >2 A} be the length of the longest path in A. We prove by complete

induction on max(A) that
P

<P1,...,Pn>2A
Qn�1

i=1 O(Pi)(Pi+1) FO(P), for every P

and for every finite subset A of !path(O, P). The result is trivial for max(A) = 0

or max(A) = 1. If max(A) = m+ 2, then P
!X�!, P

⌧�! and

X

<P1,...,Pn>2A

Qn�1
i=1 O(Pi)(Pi+1) =

X

P 02A2

O(P)(P 0) ·P<P1,...,Pn>2AP 0

Qn�1
i=1 O(Pi)(Pi+1)

where A2 = {P 0|P 0 = P2 for some < P1, ..., Pn >2 A} ✓ dO(P)e and AP 0 =

{< P1, ..., Pn > |P1 = P 0 and < P,P1, ..., Pn >2 A}. By definition, max(AP 0) <

max(A), hence it follows from the inductive hypothesis that:

X

P 02A2

O(P)(P 0) ·P<P1,...,Pn>2AP 0

Qn�1
i=1 O(Pi)(Pi+1)

X

P 02A2

O(P)(P 0) · FO(P 0)

X

P 02dO(P)e

O(P)(P 0) · FO(P 0)

= FO(P).

3.4 Testing probabilistic reactive processes 93

Suppose that pt1, pt2, ..., ptj , ... is an enumeration of the successful computations

from P , i.e. !path(P) = {ptj}j2N. For any ptj =< P1, ..., Pn >, let
Q
(ptj) =

Qn�1
i=1 O(Pi)(Pi+1). The sequence {Pk

j=1

Q
(ptj)}k2N is increasing and bounded, be-

cause
Pk

j=1

Q
(ptj) 1 for any k 2 N. Therefore, the limit of the sequence exists

and

SO(P) =
1X

j=1

Q
(ptj) = limk!1

kX

j=1

Q
(ptj) =

G

k�1

kX

j=1

Q
(ptj).

We have proved that
Pk

j=1

Q
(ptj) FO(P) for all k 2 N, hence

G

k�1

kX

j=1

Q
(ptj) FO(P).

Extremal testing

We define the functional Fsup : [0, 1]Tree(Pr(HOLp)) ! [0, 1]Tree(Pr(HOLp)) as follows:

Fsup(f)(P) =

8
>>><

>>>:

1 if P
!�!

0 if P
!X�! and P

⌧X�!
F{PP 02d�e�(P 0) · f(P 0)|P ⌧�! �} if P

!X�! and P
⌧�!.

The functional Finf is obtained by replacing
F

with
d

in Fsup.

Theorem 3.23. The functionals Fsup and Finf are continuous.

Proof. Let {fi}i2N be a non decreasing sequence of functions in [0, 1]Tree(Pr(HOLp)). We

prove that for every P 2 Tree(Pr(HOLp)),

(1) (
G

i

Fsup(fi))(P) = Fsup(
G

i

fi)(P)

(2) (
G

i

Finf(fi))(P) = Finf(
G

i

fi)(P).

If P
!�! both (1) and (2) follow in the same way as in Theorem 3.21 and we have that:

(
G

i

Fsup(fi))(P) = Fsup(
G

i

fi)(P) = (
G

i

Finf(fi))(P) = Finf(
G

i

fi)(P) = 1.

Similarly, P
!X�! and P

⌧X�! implies that:

(
G

i

Fsup(fi))(P) = Fsup(
G

i

fi)(P) = (
G

i

Finf(fi))(P) = Finf(
G

i

fi)(P) = 0.

94 Chapter 3 Testing processes through higher-order languages

Suppose that P
!X�! and P

⌧�!.

Fsup(
G

i

fi)(P) =
G

{
X

P 02d�e

�(P 0) · (
G

i

fi)(P
0)| P ⌧�! �} =

=
G

{
X

P 02d�e

�(P 0) ·
G

i

fi(P
0)| P ⌧�! �} =

=
G

{
X

P 02d�e

G

i

�(P 0) · fi(P 0)| P ⌧�! �} =

=
G

{
G

i

X

P 02d�e

�(P 0) · fi(P 0)| P ⌧�! �} = (by Lemma 3.20)

=
G

{(�,i)|P ⌧�!�}

X

P 02d�e

�(P 0) · fi(P 0) =

=
G

{(i,�)|P ⌧�!�}

X

P 02d�e

�(P 0) · fi(P 0) =

=
G

i

G
{

X

P 02d�e

�(P 0) · fi(P 0)| P ⌧�! �} =

=
G

i

Fsup(fi)(P) =

= (
G

i

Fsup(fi))(P).

Consider now the equality (2). As above, we derive that:

Finf(
G

i

fi)(P) =
l

{
G

i

X

P 02d�e

�(P 0) · fi(P 0)| P ⌧�! �}

and (
G

i

Finf(fi))(P) =
G

i

l
{

X

P 02d�e

�(P 0) · fi(P 0)| P ⌧�! �}

but in order to prove (2) we need to interchange a supremum with an infimum, instead of

two suprema.

For every � such that P
⌧�! � and for every i,

l
{

X

P 02d�e

�(P 0) · fi(P 0)| P ⌧�! �}
X

P 02d�e

�(P 0) · fi(P 0)
G

i

X

P 02d�e

�(P 0) · fi(P 0).

Therefore, for every � such that P
⌧�! � it holds that:

G

i

l
{

X

P 02d�e

�(P 0) · fi(P 0)| P ⌧�! �}
X

P 02d�e

�(P 0) · fi(P 0)
G

i

X

P 02d�e

�(P 0) · fi(P 0),

3.4 Testing probabilistic reactive processes 95

which in turn implies that:

G

i

l
{

X

P 02d�e

�(P 0) · fi(P 0)| P ⌧�! �}
l

{
G

i

X

P 02d�e

�(P 0) · fi(P 0)| P ⌧�! �}.

It remains to prove the other direction of the previous inequality.

The processes we consider are image-finite processes, hence {�| P ⌧�! �} = {�1, ...�n},
for some n 2 N; so there is a �0 2 {�1, ...�n} such that:

l
{
G

i

X

P 02d�e

�(P 0) · fi(P 0)| P ⌧�! �} =

= min{
G

i

X

P 02d�e

�(P 0) · fi(P 0)| � = �1 _ ... _� = �n}

=
G

i

X

P 02d�0e

�0(P 0) · fi(P 0).

Let ⇥1,⇥2, . . . be a denumerable sequence of probability distributions such that for every

i � 1, ⇥i 2 {�1, ...�n} and

X

P 02d⇥ie

⇥i(P
0) · fi(P 0) = min{

X

P 02d�e

�(P 0) · fi(P 0)| P ⌧�! �}.

It follows from the image-finiteness of P that there exists at least one probability dis-

tribution �00 2 {�1, ...�n} which occurs infinitely many times in the sequence {⇥i}i2N.
Therefore, for every k 2 N there is a k0 � k such that:

X

P 02d�00e

�00(P 0) · fk0(P 0) =
X

P 02d⇥k0e

⇥k0(P
0) · fk0(P 0).

The sequence of functions {fi}i2 N is non-decreasing, hence the sequence {PP 02d�00e�
00(P 0)·

fi(P 0)}i2N is non-decreasing as well. It follows from the equality above that for every k

there is a k0 � k such that:

X

P 02d�00e

�00(P 0) · fk(P 0)
X

P 02d⇥k0e

⇥k0(P
0) · fk0(P 0)

G

i

X

P 02d⇥ie

⇥i(P
0) · fi(P 0).

By applying the definition of least upper bound to the left-hand side of the inequality we

obtain that: G

i

X

P 02d�00e

�00(P 0) · fi(P 0)
G

i

X

P 02d⇥ie

⇥i(P
0) · fi(P 0)

96 Chapter 3 Testing processes through higher-order languages

and the desired inequality follows:

G

i

X

P 02d�0e

�0(P 0) · fi(P 0) = min{
G

i

X

P 02d�e

�(P 0) · fi(P 0)| P ⌧�! �}

G

i

X

P 02d�00e

�00(P 0) · fi(P 0)

G

i

X

P 02d⇥ie

⇥i(P
0) · fi(P 0)

=
G

i

min{
X

P 02d�e

�(P 0) · fi(P 0)| P ⌧�! �}.

By Theorem 3.23 and by the Continuity Theorem on complete lattices it holds that both

Fsup and Finf have least fixed points Fsup and Finf such that Fsup =
F

n�0 Fn
sup(?) and

Finf =
F

n�0 Fn
inf(?), respectively.

Theorem 3.24. For every oracle O, Finf FO Fsup.

Proof. By induction on n we prove that Fn
inf(?) Fn

O(?) for all n 2 N. The case n = 0

is trivial. Let P
!X�! and P

⌧�!.

Fn+1
inf (?)(P) =

l
{

X

P 02d�e

�(P 0) · Fn
inf(?)(P 0)|P ⌧�! �}

X

P 02dO(P)e

O(P)(P 0) · Fn
inf(?)(P 0)

X

P 02dO(P)e

O(P)(P 0) · Fn
O(?)(P 0) (by HI)

= Fn+1
O (?)(P).

By the continuity of the functionals Finf and FO we have that Finf =
F

n�0 Fn
inf(?)

F
n�0 Fn

O(?) = FO .

The proof of FO Fsup is similar.

Let
F

O FO (respectively:
d

O FO) denote
d{FO | O is an oracle on Tree(Pr(HOLp))}

(respectively:
d{FO | O is an oracle on Tree(Pr(HOLp))}).

Lemma 3.25. Let � be a probability distribution on Tree(Pr(HOLp)).

G

O

X

P2d�e

�(P) · FO(P) =
X

P2d�e

�(P) ·
G

O

FO(P).

3.4 Testing probabilistic reactive processes 97

Proof. For every P 2 d�e and for every oracle O, FO(P) F
O FO(P). Therefore,

�(P) · FO(P) �(P) · FO FO(P), which in turn implies that
P

P2d�e�(P) · FO(P)
P

P 02d�e�(P) ·FO FO(P) for every oracle O. By the definition of supremum,

G

O

X

P2d�e

�(P) · FO(P)
X

P2d�e

�(P) ·
G

O

FO(P).

In order to prove the other inequality, we show that:

(1) for every positive real number r there exists an oracle O such that:

X

P2d�e

�(P) ·
G

O

FO(P)�
X

P2d�e

�(P) · FO(P) < r,

(2) the result follows from (1).

(1) Let d�e = {P1..., Pn}. For every positive real number r and for every Pi 2 d�e there
is an oracle Oi such that

F
O FO(Pi)�FOi(Pi) < r. As a consequence, for every r > 0

and for every Pi 2 d�e there is an oracle Oi such that
F

O FO(Pi)�FOi(Pi) <
r
n . Then

�(Pi) · (
F

O FO(Pi)�FOi(Pi)) <
r
n . Let O 0 be an oracle such that FOi(Pi) = FO0(Pi)

for every Pi 2 d�e. Such an oracle can be obtained by defining O 0(P) = Oi(P)

for every Pi 2 d�e and for every P reachable from Pi. Hence, for every r > 0 and

for every Pi 2 d�e, �(Pi) ·
F

O FO(Pi) � �(Pi) · FO0(Pi) <
r
n . By adding up these

values for every Pi 2 d�e we obtain that for every r > 0 there is an O 0 such that
P

P 02��(P) ·FO FO(P)�P
P2��(P) · FO0(P) < r.

(2) Suppose that:

(?)
G

O

X

P2d�e

�(P) · FO(P) <
X

P2d�e

�(P) ·
G

O

FO(P).

Then
P

P2d�e�(P) ·FO FO(P) �F
O

P
P2d�e�(P) · FO(P) > 0, which implies by

(1) that there is an oracle O 0 such that:
X

P2d�e

�(P) ·
G

O

FO(P)�
X

P2d�e

�(P) · FO0(P) <
X

P2d�e

�(P) ·
G

O

FO(P)�
G

O

X

P2d�e

�(P) · FO(P).

Therefore,
F

O

P
P2d�e�(P) · FO(P) <

P
P2d�e�(P) · FO0(P), which contradicts

the definition of supremum.

Theorem 3.26. The following equalities hold:

(1) Fsup =
G

O

FO

98 Chapter 3 Testing processes through higher-order languages

(1) Finf =
l

O

FO

Proof. It follows from Theorem 3.24 that Finf d
O FO and

F
O FO Fsup. Hence, it

remains to prove that the inequalities in the opposite direction hold as well.

(1) We show that
F

O FO is a fixed point of Fsup, which implies that Fsup F
O FO . If

P
!�! then FO(P) = 1 for every oracle O. Hence,

F
O FO(P) = 1 = Fsup(

F
O FO)(P).

Analogously, if P
!X�! and P

⌧X�! then
F

O FO(P) = 0 = Fsup(
F

O FO)(P). Suppose

now that P
!X�! and P

⌧�!. We have that:

G

O

FO(P) =
G

O

X

P 02dO(P)e

O(P)(P 0) · FO(P
0) =

=
G

{�|P ⌧�!�}

G

O

X

P 02d�e

�(P 0) · FO(P
0)

=
G

{�|P ⌧�!�}

X

P 02d�e

�(P 0) ·
G

O

FO(P
0) (by Lemma 3.25)

= Fsup(
G

O

FO)(P).

(2) Let Om be an oracle such that whenever P
!X�! and P

⌧�!,

X

P 02dOm(P)e

Om(P)(P 0) · Finf(P
0)

X

P 02d�e

�(P 0) · Finf(P
0)

for every P and for every � such that P
⌧�! �. We prove that Finf is a fixed-point

of the functional FOm .

If P
!�! (respectively: P

!X�! and P
⌧X�!) then both Finf(P) and FOm(Finf)(P) are

1 (respectively: 0). If P
!X�! and P

⌧�! then:

FOm(Finf)(P) =
X

P 02dOm(P)e

Om(P)(P 0) · Finf(P
0) =

= min{
X

P 02d�e

�(P 0) · Finf(P
0)| P ⌧�! �} = (by the definition of Om)

= Finf(P).

Therefore, the least fixed point FOm of FOm is below Finf and the result follows from

the fact that
d

O FO FOm .

Theorem 3.27. Let P,Q be states in Tree(Pr(HOLp)). If P ⇠ Q then Fsup(P) = Fsup(Q)

and Finf(P) = Finf(Q).

3.4 Testing probabilistic reactive processes 99

Proof. By induction on n we prove that for all P,Q, if P ⇠ Q then Fn
sup(?)(P) =

Fn
sup(?)(Q) and Fn

inf(?)(P) = Fn
inf(?)(Q).

The case n = 0 follows from the definition of ?. For the inductive step, if P ⇠ Q then

there are three possible cases:

1. P
!�! and Q

!�!. In this case, every function returns 1.

2. P
!X�!, Q

!X�!, P
⌧X�!, Q

⌧X�!. Symmetrically, every function returns 0.

3. P
!X�!, Q

!X�!, P
⌧�!, Q

⌧�!.

If P ⇠ Q and P
⌧�! �, then there exists a probability distribution ⇥ such that

Q
⌧�! ⇥ and for some index set I:

X

P 02d�e

�(P 0) · Fn
sup(?)(P 0) =

X

i2I
pi · Fn

sup(?)(Pi) =

=
X

i2I
pi · Fn

sup(?)(Qi) = (by HI)

=
X

Q02d⇥e

⇥(Q0) · Fn
sup(?)(Q0).

Therefore,

{
X

P 02d�e

�(P 0) · Fn
sup(?)(P 0)|P ⌧�! �} ✓ {

X

Q02d⇥e

⇥(Q0) · Fn
sup(?)(Q0)|Q ⌧�! ⇥}.

It follows from the fact that ⇠ is an equivalence relation that the opposite inclusion

holds too. Hence, we have that:

Fn+1
sup (?)(P) =

G
{

X

P 02d�e

�(P 0) · Fn
sup(?)(P 0)|P ⌧�! �} =

=
G

{
X

Q02d⇥e

⇥(Q0) · Fn
sup(?)(Q0)|Q ⌧�! ⇥} =

= Fn+1
sup (?)(Q).

The proof for Fn+1
inf (?) is similar and the result follows from the continuity of the

functionals Fsup and Finf .

Corollary 3.28. Let P,Q be states in Tree(Pr(HOLp)). If P ⇠ Q then
F
S(P) =

F
S(Q)

and
d

S(P) =
d
S(Q).

Proof. The result follows from Theorem 3.27, Theorem 3.26 and Theorem 3.22.

100 Chapter 3 Testing processes through higher-order languages

3.4.4 The collapse of equivalences

Theorem 3.29 states the main result of Section 3.4: on any class of LS-processes, proba-

bilistic bisimilarity coincides with both may-equivalence and must-equivalence.

In Section 3.4.2 we proved that if two LS-processes are not probabilistically bisimilar, then

there is a HOL-context di↵erentiating the processes with respect to both may-equivalence

and must-equivalence. The proof of this result exploited an encoding of the tests defined

in (Larsen and Skou 1991) and presented in the previous chapter, Section 2.3. Finally,

in Section 3.4.3 we proved that HOL-contexts do not discriminate too much, that is, the

missing direction of Theorem 3.29: probabilistic bisimilarity on LS-processes implies test-

equivalence.

Theorem 3.29. On any class Pr(LS) of LS-processes it holds that:

⇠ = 'HOLp
may = 'HOLp

must = 'HOLp
test .

Proof. Let P,Q be processes in Pr(LS) such that P ⇠ Q and let C be a context in

Ctx(HOL). It follows from Theorem 3.18 that C[P] ⇠ C[Q]. Let P 0 and Q0 denote the

unfolding of C[P] and C[Q], respectively. Bisimilarity is preserved by unfolding, hence

P 0 ⇠ Q0 and, by Theorem 3.28,
F

S(P 0) =
F
S(Q0) and

d
S(P 0) =

d
S(Q0). It is easy

to check that for every HOLp-process S and for every oracle O on Pr(HOLp) there is an

oracle O 0 on Tree(Pr(HOLp)) such that SO(S) = SO0
(S0) (where S0 is the unfolding of

S) and conversely. Therefore,
F
S(C[P]) =

F
S(C[Q]) and

d
S(C[P]) =

d
S(C[Q]), which

implies that bisimilarity is included in 'HOLp
may ,'HOLp

must and 'HOLp
test .

The opposite inclusion holds by Theorem 3.17, so the result follows.

Appendix

Complete lattices and fixed-points

A poset (partially ordered set) is a pair (A,) where A is a non-empty set and is a

partial order on A, i.e. is a binary relation on A satisfying the following properties:

a a (reflexivity)

a b & b a implies a = b (antisymmetry)

a b & b c implies a c (transitivity)

for all a, b, c 2 A.

Let (A,) be a poset and let S be a subset of A.

• An element a of A is an upper bound of S if s a for every s 2 S.

• An element a of A is a lower bound of S if a s for every s 2 S.

• The greatest element of S (or maximum of S) is an upper bound a of S such that

a 2 S, if such an a exists.

• The least element of S (or minimum of S) is a lower bound a of S such that a 2 S,

if such an a exists.

• The least upper bound of S (or supremum or join of S) is the least element of the

set of upper bounds of S.

• The greatest lower bound of S (or infimum or meet of S) is the greatest element of

the set of lower bounds of S.

It is easy to check that if the maximum (respectively: the minimum) of a set exists, then

it is unique. As a consequence, the same holds for the supremum and the infimum of a

set. We let
F
S denote the supremum of S and we let

d
denote the infimum of S, if they

exist.

101

102 Appendix

Let (A,) be a poset.

(A,) is a lattice if it holds that
F{a, b} 2 A, for every pair a, b 2 A.

(A,) is a complete lattice if it holds that
F
S 2 A, for every subset S ✓ A.

Theorem 1. If (A,) is a complete lattice then
d
S 2 A, for every subset S ✓ A.

Proof. Let S0 = {a 2 A| a s for every s 2 S}. By the definition of complete lattice, the

supremum of S0 exists. We prove that
F
S0 =

d
S.

If s 2 S and s0 2 S0 then s0 s, hence
F
S0 s. Suppose now that a s for every s 2 S.

Then a 2 S0 and it follows from the definition of supremum that a F
S0.

Therefore, both the supremum and the infimum of A exist in a complete lattice (A,).

The top (>) and bottom (?) elements of A are its supremum and infimum, respectively.

A function f : A ! A on a complete lattice (A,) is monotonic if a b implies f(a)
f(b), for all a, b 2 A.

For any sequence a0, a1, . . . , ai, . . ., let
F

i ai =
F{ai}i.

A function f : A ! A on a complete lattice (A,) is continuous if f(
F

i ai) =
F

i f(ai) for

every non-decreasing sequence a0, a1, . . . , ai,

Theorem 2. Let f : A ! A be a continuous function on a complete lattice (A,). Then

f is monotonic.

Proof. Consider the nondecreasing sequence a0, a1, . . . , ai, . . . such that a0 = a and ai = b

for i � 1. By the continuity of f we have that f(b) = f(
F

i ai) =
F

i f(ai), which is above

f(a) by the definition of supremum. Hence, f(a) f(b).

Let (A,) be a poset and let f : A ! A. We say that a 2 A is a fixed-point of f if

f(a) = a and we let Fix(f) denote the set of fixed-points of f .

Theorem 3 (Fixed-point Theorem). Let f : A ! A be a monotone function on a complete

lattice (A,). Then (Fix(f),) is a complete lattice.

Proof. Let S ✓ Fix(f). (A,) is a complete lattice, then
F
S exists in A. We prove that

F
S is a fixed point of f .

If s 2 S then s F
S and by the monotonicity of f we have that f(s) f(

F
S). Since

S is a set of fixed points it holds that s = f(s), so s f(
F
S) for every s 2 S. Hence,

F
S f(

F
S).

Let S0 = {a 2 A| f(a) a and
F

S a}. By Theorem 1, the infimum of S0 exists and

it is easy to check that
d

S0 =
F

S. By the definition of S0, if s 2 S0 then
F
S s0. It

Complete lattices and fixed-points 103

follows from the monotonicity of f that f(
F
S) f(s0). For every s0 2 S0, f(s0) s0, then

f(
F

S) f(s0) s0. Therefore, f(
F
S) d

S0 =
F
S and the result follows.

As a consequence of Theorem 3, if f : A ! A is a monotone function on a complete lattice

(A,) then the bottom of Fix(f) exists in Fix(f) and is the least fixed-point of f (i.e. the

least of the set of fixed-points of f). We let lfp(f) denote the least fixed-point of f .

Given a function f : A ! A, let fn(a) denote the n-th iteration of f on a, for any a 2 A.

The function fn is defined as follows:

f0(a) = a

fn+1(a) = f(fn(a)).

Theorem 4 (Continuity Theorem). Let f : A ! A be a continuous function on a complete

lattice (A,). It holds that:

lfp(f) =
G

n

fn(?).

Proof. We prove that
F

n f
n(?) is a fixed-point of f and that

F
n f

n(?) lfp(f), which

implies the result since lfp(f) is the least fixed-point of f .

By Theorem 2, f is monotonic, so it follows from the fact that ? a for all a 2 A that

fn(?) fn+1(?) for all n 2 N. Therefore, f0(?), f1(?), . . . is a non-decreasing sequence.

By the continuity of f we have that f(
F

n f
n(?)) =

F
n f(f

n(?)) =
F

n f
n+1(?). The

sequence f0(?), f1(?), . . . is non-decreasing, so
F

n f
n+1(?) =

F
n f

n(?) and we have

that
F

n f
n(?) is a fixed-point of f .

Let n 2 N. By the definition of bottom, ? lfp(f) and by iterating the property of

monotonicity we obtain that fn(?) fn(lfp(f)). By iteratively applying the definition of

fixed-point to lfp(f), we conclude that fn(?) fn(lfp(f)) = lfp(f). Therefore, fn(?)
lfp(f) for every n 2 N, which implies that

F
n f

n(?) lfp(f).

104 Appendix

Bibliography

Abramsky, S. (1987). “Observation Equivalence as a Testing Equivalence”. In: Theoretical

Computer Science 53.2-3, pp. 225 –241.

Aceto, L., A. Ingólfsdóttir, and J. Srba (2012). “The Algorithmics of Bisimilarity”. In:

Advanced Topics in Bisimulation and Coinduction. Ed. by D. Sangiorgi and J. Rutten.

Vol. 52. Cambridge Tracts in Theoretical Computer Science. Cambridge: Cambridge

University Press. Chap. 3, pp. 100–174.

Aceto, L. et al. (2007). Reactive Systems: Modelling, Specification and Verification. Cam-

bridge: Cambridge University Press.

Aczel, P. (1988). Non-Well-Founded Sets. Vol. 14. CSLI Lecture Notes. Stanford: CSLI.

Baeten, J. C. M., ed. (1990). Applications of Process Algebra. Vol. 17. Cambridge Tracts

in Theoretical Computer Science. Cambridge: Cambridge University Press.

Baeten, J. C. M. (2005). “A brief history of process algebra”. In: Theoretical Computer

Science 335.2-3, pp. 131 –146.

Baier, C. and M. Kwiatkowska (2000). “Domain Equations for Probabilistic Processes”.

In: Mathematical Structures in Computer Science 10, pp. 665–717.

Bergstra, J. A. and J. W. Klop (1984). “Process Algebra for Synchronous Communication”.

In: Information and Control 60.1-3, pp. 109 –137.

Bernardo, M., R. De Nicola, and M. Loreti (2013a). “A Uniform Framework for Modeling

Nondeterministic, Probabilistic, Stochastic, or Mixed Processes and their Behavioral

Equivalences”. In: Information and Computation 225.0, pp. 29 –82.

— (2013b). “Relating Strong Behavioral Equivalences for Processes with Nondeterminism

and Probabilities”. To appear in Theoretical Computer Science.

105

106 Bibliography

Bernardo, M., R. De Nicola, and M. Loreti (2013c). Revisiting Bisimilarity and its Modal

Logic for Nondeterministic and Probabilistic Processes. Tech. rep. IMT Institute for

Advanced Studies Lucca. url: http://eprints.imtlucca.it/id/eprint/1553.

— (2013d). “The Spectrum of Strong Behavioral Equivalences for Nondeterministic and

Probabilistic Processes”. In: Proceedings 11th International Workshop on Quantitative

Aspects of Programming Languages and Systems, Rome, 23rd-24th March 2013. Ed.

by L. Bortolussi and H. Wiklicky. Vol. 117. Electronic Proceedings in Theoretical

Computer Science. Open Publishing Association, pp. 81–96.

Bertsekas, D. P. and J. N. Tsitsiklis (2008). Introduction to Probability Theory. Second

Edition. Belmont: Athena Scientific.

Blackburn, P., M. de Rijke, and Y. Venema (2001).Modal Logic. Vol. 53. Cambridge Tracts

in Theoretical Computer Science. Cambridge: Cambridge University Press.

Bloom, B., S. Istrail, and A. R. Meyer (1995). “Bisimulation Can’t Be Traced”. In: Journal

of the Association for Computing Machinery 42.1, pp. 232–268.

Davies, B. A. and H. A. Priestley (2002). Introduction to Lattices and Order. Second

Edition. Cambridge: Cambridge University Press.

De Nicola, R. and M. Hennessy (1984). “Testing Equivalences for Processes”. In: Theoret-

ical Computer Science 34, pp. 83–133.

DeGroot, M. H. and M. J. Schervish (2012). Probability and Statistics. Fourth Edition.

Boston: Addison-Wesley.

Deng, Y. and W. Du (2007). “Probabilistic Barbed Congruence”. In: Electronic Notes in

Theoretical Computer Science 190.3. Also appeared in Proceedings of the 5th Workshop

on Quantitative Aspects of Programming Languages, pp. 185–203.

— (2011). Logical, Metric, and Algorithmic Characterisations of Probabilistic Bisimula-

tion. Tech. rep. CMU-CS-11-110. Carnegie Mellon University.

Deng, Y. et al. (2007). “Remarks on Testing Probabilistic Processes”. In: Electronic Notes

in Theoretical Computer Science 172, pp. 359–397.

Deng, Y. et al. (2008). “Characterising Testing Preorders for Finite Probabilistic Pro-

cesses”. In: Logical Methods in Computer Science 4.4:4, pp. 1–33.

— (2009). “Testing Finitary Probabilistic Processes”. In: CONCUR 2009 - Concurrency

Theory, 20th International Conference, CONCUR 2009, Bologna, Italy, September 1-

http://eprints.imtlucca.it/id/eprint/1553

Bibliography 107

4, 2009. Proceedings. Ed. by M. Bravetti and G. Zavattaro. Vol. 5710. Lecture Notes

in Computer Science. Springer, pp. 274–288.

Desharnais, J., A. Edalat, and P. Panangaden (2002). “Bisimulation for Labelled Markov

Processes”. In: Information and Computation 179, pp. 163–193.

Desharnais, J. et al. (2003). “Approximating Labelled Markov Processes”. In: Information

and Computation 184, pp. 160–200.

Goldblatt, R. (2006). “Mathematical modal logic: A view of its evolution”. In: Logic and

the Modalities in the Twentieth Century. Ed. by D. M. Gabbay and J. Woods. Vol. 7.

Handbook of the History of Logic. Amsterdam: Elsevier, pp. 1 –98.

Gorrieri, R. (2013). “Introduction to Concurrency Theory”. Manuscript.

Hennessy, M. (2012). “Exploring Probabilistic Bisimulations, Part I”. In: Formal Aspects

of Computing 24.4-6, pp. 749–768.

Hennessy, M. and R. Milner (1985). “Algebraic Laws for Nondeterminism and Concur-

rency”. In: Journal of the Association for Computing Machinery 32.1, pp. 137–161.

Hermanns, H. et al. (2011). “Probabilistic Logical Characterization”. In: Information and

Computation 209.2, pp. 154–172.

Hoare, C. A. R. (1978). “Communicating Sequential Processes”. In: Communications of

the ACM 21.8, pp. 666–677.

— (1980). “Communicating Sequential Processes”. In: On the Construction of Programs

- An Advanced Course. Ed. by R. M. McKeag and A. M. Macnaghten. New York:

Cambridge University Press, pp. 229–254.

Jacobs, B. and J. Rutten (2012). “An Introduction to (co)algebra and (co)induction”. In:

Advanced Topics in Bisimulation and Coinduction. Ed. by D. Sangiorgi and J. Rutten.

Vol. 52. Cambridge Tracts in Theoretical Computer Science. Cambridge: Cambridge

University Press. Chap. 2, pp. 38–99.

Kripke, S. (1963). “Semantical Considerations on Modal Logic”. In: Acta Philosophica

Fennica 16, pp. 83–94.

Larsen, K. G. and A. Skou (1991). “Bisimulation through Probabilistic Testing”. In: In-

formation and Computation 94.1, pp. 1–28.

108 Bibliography

Milner, R. (1971). “An Algebraic Definition of Simulation Between Programs”. In: Pro-

ceeding of the 2nd International Joint Conferences on Artificial Intelligence. British

Computer Society. London.

— (1980). A Calculus of Communicating Systems. Ed. by G. Goos and J. Hartmanis.

Vol. 92. Lecture Notes in Computer Science. Berlin: Springer.

— (1981). “A Modal Characterisation of Observable Machine-behaviour”. In: CAAP ’81.

Ed. by E. Astesiano and C. B́’ohm. Vol. 112. Lecture Notes in Computer Science.

Berlin: Springer, pp. 25–34.

— (1983). “Calculi for Synchrony and Asynchrony”. In: Theoretical Computer Science

25, pp. 267–310.

— (1989). Communication and Concurrency. Exeter: Prentice Hall.

Park, D. (1981). “Concurrency and Automata on Infinite Sequences”. In: Conference on

Theoretical Computer Science. Ed. by P. Deussen. Vol. 104. Springer, pp. 167–183.

Parma, A. and R. Segala (2007). “Logical Characterizations of Bisimulations for Discrete

Probabilistic Systems”. In: Foundations of Software Science and Computational Struc-

tures. Ed. by H. Seidl. Vol. 4423. Lecture Notes in Computer Science. Berlin: Springer,

pp. 287–301.

Plotkin, G. D. (2004a). “A Structural Approach to Operational Semantics”. In: The Jour-

nal of Logic and Algebraic Programming 60–61, pp. 17 –139.

— (2004b). “The Origins of Structural Operational Semantics”. In: The Journal of Logic

and Algebraic Programming 60–61.0, pp. 3 –15.

Puterman, M. L. (1994). Markov Decision Processes. Wiley Series in Probability and

Mathematical Statistics. Hoboken: John Wiley & Sons.

Sangiorgi, D. (2012a). Introduction to Bisimulation and Coinduction. Cambridge: Cam-

bridge University Press.

— (2012b). “On the origins of bisimulation and coinduction”. In: Advanced Topics in

Bisimulation and Coinduction. Ed. by D. Sangiorgi and J. Rutten. Vol. 52. Cam-

bridge Tracts in Theoretical Computer Science. Cambridge: Cambridge University

Press. Chap. 1, pp. 1–37.

Sangiorgi, D. and D. Walker (2001). The ⇡-calculus: a Theory of Mobile Processes. Cam-

bridge: Cambridge University Press.

Bibliography 109

Schmitt, A. and J. Stefani (2005). “The Kell Calculus: A Family of Higher-Order Dis-

tributed Process Calculi”. In: Global Computing. Ed. by C. Priami and P. Quaglia.

Vol. 3267. Lecture Notes in Computer Science. Berlin: Springer, pp. 146–178.

Segala, R. and N. Lynch (1994). “Probabilistic simulations for probabilistic processes”.

In: CONCUR ’94: Concurrency Theory. Ed. by B. Jonsson and J. Parrow. Vol. 836.

Lecture Notes in Computer Science. Berlin: Springer, pp. 481–496.

— (1995). “Probabilistic simulations for probabilistic processes”. In: Nordic Journal of

Computing 2.2, pp. 250–273.

Sokolova, A. and E. P. Vink (2004). “Probabilistic Automata: System Types, Parallel

Composition and Comparison”. In: Validation of Stochastic Systems. Ed. by C. Baier

et al. Vol. 2925. Lecture Notes in Computer Science. Berlin: Springer, pp. 1–43.

van Benthem, J. (1983). Modal Logic and Classical Logic. Napoli: Bibliopolis.

van Glabbeek, R. J. (2001). “The Linear Time - Branching Time Spectrum I. The Se-

mantics of Concrete, Sequential Processes”. In: Handbook of Process Algebra. Ed. by

J. A. Bergstra, A. Ponse, and S.A. Smolka. Amsterdam: Elsevier, pp. 3–99.

van Glabbeek, R. J., S. A. Smolka, and B. Ste↵en (1995). “Reactive, Generative and

Stratified Models of Probabilistic Processes”. In: Information and Computation Com-

put. 121.1, pp. 59–80.

van Glabbeek, R. J. et al. (1990). “Reactive, Generative, and Stratified Models of Prob-

abilistic Processes”. In: LICS. Proceedings of the Fifth Annual Symposium on Logic

in Computer Science (LICS ’90), Philadelphia, Pennsylvania, USA, June 4-7, 1990.

IEEE Computer Society, pp. 130–141.

Yi, W. and K. G. Larsen (1992). “Testing Probabilistic and Nondeterministic Processes”.

In: PSTV-Protocol Specification, Testing and Verification XII, Proceeding of the IFIP

TC6/WG6.1 Twelfth International Symposium on Protocol Specification, Testing and

Verification. Ed. by R. J. Linn Jr. and M. Ümit Uyar. Vol. C-8. IFIP Transactions.

North-Holland, pp. 47–61.

	Introduction
	Behavioral equivalences on nondeterministic processes
	Labelled Transition Systems
	Bisimilarity
	Approximants of bisimilarity
	Hennessy-Milner Logic

	Why bisimilarity?
	Trace equivalence
	Completed trace equivalence
	Simulation equivalence
	Completed simulation equivalence
	Ready simulation equivalence
	Bisimilarity and isomorphism
	The spectrum of equivalences

	A Calculus of Communicating Systems

	Probabilistic processes
	Probabilistic Labelled Transition Systems
	Probabilistic bisimilarity
	Probabilistic bisimilarity through lifted relations
	Probabilistic bisimilarity on reactive probabilistic processes
	Probabilistic Modal Logic

	Larsen & Skou's testing theory
	Testability of PML-formulas
	Characterization of probabilistic bisimilarity

	Testing processes through higher-order languages
	Testing equivalences
	HOL
	Testing nondeterministic processes
	Testing preorders on nondeterministic processes
	Ready simulation equivalence implies test-equivalence
	Characterization of may-equivalence
	Characterization of testing equivalences

	Testing probabilistic reactive processes
	Testing preorders on probabilistic processes
	HOL-contexts discriminate non-probabilistically bisimilar processes
	Probabilistic bisimilarity implies test-equivalence
	The collapse of equivalences

	Appendix: Complete lattices and fixed-points
	Bibliography

